Modern emerged technologies impose development and fabrication of miniatur-ized parts and devices in the micro- and nano-scale. Producing micro- and nano-featured structures requires nonconventional machining processes where con-ventional machining processes such as grinding, milling and eroding have failed. New emerging processes, such laser machining processes, are still fraught with almost invincible processes. Micro-/nano-machining are the pro-cesses of producing parts, microsystems or features at a scale of a few microm-eters and less than one hundred nanometers, respectively. Precise cutting and clean material removal accompanied with a negligible heat affected zone (HAZ), which are usually the characteristics of laser ablation, have opened a wide door for the evolution of remarkable technologies. This has been demonstrated by applications in different fields such as medicine, biotechnology, materials pro-cessing, microelectromechanical systems, electronics and communications. The continuous development in laser technology in terms of ultra-short pulse width, short wavelength and optics technologies has reduced the drawbacks of diffrac-tion-limited processing accuracies. Laser micro-/nano-machining requires the attainment of high fluence and short interaction time to achieve ablation pro-cesses in nanofabrication and structuring of different materials. To conduct the optimum desired machining process, it is important to integrally consider a number of laser beam and working parameters. Laser wavelength, beam mode, minimum attainable spot size, peak power, pulse duration, pulse repetition rate and scanning speed are some of the important considerations. Manipulating those parameters is crucial for ideal laser ablation represented by yielding the highest resolution of machining with the least lateral dimensions, acceptable depth and minimal or no melt at the edges. The assembly of laser beam delivery and focusing system with an automation system are the essential factors for workpiece positioning and obtaining the desired dimensions. The objective of this chapter is to review the effective parameters associated with laser machin-ing processes that affect the dimensions and quality of laser machining at the micro-/nano-scales in a simple presentation. The review is supported by demonstrating laser processing techniques applied in the field of micro-/nano-machining such as mask, interferometric and scribing techniques.
The study aimed to examine the phonological processing profile for students with and without reading disabilities in cycle 1 schools of basic education in the Governorate of Muscat, Sultanate of Oman. The study participants included 306 students, 165 students with reading disabilities and 141 students without reading disabilities. The Comprehensive Test of Phonological Processing (CTOPP) and Working Memory Test (WMT) were administered to the participants. The results of the study showed that the mean score of students without reading disabilities was higher than that of students of reading disabilities in all measures of phonological processing, and that there are statistically significant differences on the case of students in all
... Show MoreEffects of Ozonated Water on Micro Leakage between Enamel and Fissure Sealants Prepared by Different Etching Technique (An in vitro Study), Baraa M Jabar*, Muna S Khalaf
This paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained fro
... Show MoreThe main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9
... Show MoreIn this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa
... Show MoreThis work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool r
... Show MoreArtificial roughness applied to a Solar Air Heater (SAH) absorber plate is a popular technique for increasing its total thermal efficiency (ηt−th). In this paper, the influence of geometrical parameters of V-down ribs attached below the corrugated absorbing plate of a SAH on the ηt−th was examined. The impacts of key roughness parameters, including relative pitch p/e (6–12), relative height e/D (0.019–0.043), angles of attack α (30–75°), and Re (1000–20,000), were examined under real weather conditions. The SAH ηt−th roughened by V-down ribs was predicted using an in-house developed conjugate heat-transfer numerical model. The maximum SAH ηt−th was shown to be 78.8% as predicted under the steady-state condition
... Show More