Modern emerged technologies impose development and fabrication of miniatur-ized parts and devices in the micro- and nano-scale. Producing micro- and nano-featured structures requires nonconventional machining processes where con-ventional machining processes such as grinding, milling and eroding have failed. New emerging processes, such laser machining processes, are still fraught with almost invincible processes. Micro-/nano-machining are the pro-cesses of producing parts, microsystems or features at a scale of a few microm-eters and less than one hundred nanometers, respectively. Precise cutting and clean material removal accompanied with a negligible heat affected zone (HAZ), which are usually the characteristics of laser ablation, have opened a wide door for the evolution of remarkable technologies. This has been demonstrated by applications in different fields such as medicine, biotechnology, materials pro-cessing, microelectromechanical systems, electronics and communications. The continuous development in laser technology in terms of ultra-short pulse width, short wavelength and optics technologies has reduced the drawbacks of diffrac-tion-limited processing accuracies. Laser micro-/nano-machining requires the attainment of high fluence and short interaction time to achieve ablation pro-cesses in nanofabrication and structuring of different materials. To conduct the optimum desired machining process, it is important to integrally consider a number of laser beam and working parameters. Laser wavelength, beam mode, minimum attainable spot size, peak power, pulse duration, pulse repetition rate and scanning speed are some of the important considerations. Manipulating those parameters is crucial for ideal laser ablation represented by yielding the highest resolution of machining with the least lateral dimensions, acceptable depth and minimal or no melt at the edges. The assembly of laser beam delivery and focusing system with an automation system are the essential factors for workpiece positioning and obtaining the desired dimensions. The objective of this chapter is to review the effective parameters associated with laser machin-ing processes that affect the dimensions and quality of laser machining at the micro-/nano-scales in a simple presentation. The review is supported by demonstrating laser processing techniques applied in the field of micro-/nano-machining such as mask, interferometric and scribing techniques.
We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.
The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F
... Show MoreExcessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M
... Show MoreBackground: Despite the fact that asthma is a long-term disease that may be treated, many people are unable to control their symptoms due to a lack of knowledge about their condition. The study's purpose was to find out if a pharmacist intervention improved asthma management because of this.
Objective: this study designed to assess the effect of pharmaceutical care on pulmonary functions test.
Method: The study was completed in three months. The patients who were enrolled were divided into two groups: Group 1 consists of 23 asthma patients who were randomly assigned to receive conventional therapy for chronic bronchial asthma based on disease stage and se
... Show MoreBackground: To evaluate the effect of antierosive agents (10% Nano-Hydroxyapatite (NHA), 10% Casein Phophopeptide-Amorphous Calcium Phosphate (CPP-ACP), and combination of 10% NHA and 10% CPP-ACP) on loss of minerals from enamel surface of permanent teeth treated with antierosive agents when exposed to an acidic beverage and investigate the morphological changes of treated enamel surface after demineralization with cola based beverage under Scanning Electron Microscope (SEM). Materials and Methods: Sixty maxillary first premolars were randomly divided into four groups, 15 teeth for each group. Group I treated with 10% NHA, Group II treated with 10% CPP-ACP, Group III treated with 10% NHA and 10% CPP-ACP, and Group IV did not treat with any
... Show MoreThe preparation of composite metal oxide to attain high efficiency in removing phenol from wastewater has a great concern. In the present study, the focus would be on adopting antimony-tin oxide coating onto graphite substrates instead of titanium; besides the effect of SbCl3 concentration on the SnO2-Sb2O3 composite would be examined. The performance of this composite electrode as the working electrode in the removal of phenol by sonoelectrochemical oxidation will be studied. The antimony-tin dioxide composite electrode was prepared by cathodic deposition with SnCl2 . 2H2O solution in a mixture of HNO3 and NaNO3, with different concentrations of SbCl3. The SnO2-Sb2O3 deposit layer’s structure and morphology were examined and the 4 g/l Sb
... Show MoreBackground: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements, like low impact and transverse strength, poor thermal conductivity. The purpose of this study was to evaluate the effect of addition a composite of surface treated Nano Aluminum oxide (Al2O3) filler and plasma treated polypropylene fiber (PP) on some properties of denture base material. Materials and methods: One hundred fifty prepared specimens were divided into 5 groups according to the tests, each group consisted of 30 specimens and these were subdivided into 3 groups (unreinforced heat cured acrylic resin as control group),reinforced acrylic resin with( 0.5%wt Nan
... Show MoreATAW Eqbal Abdul Ameer'. Shifaa Jameel Ibrahim?, HISTORY Of MEDICINE, 2023