The paper establishes explicit representations of the errors and residuals of approximate
solutions of triangular linear systems by Jordan elimination and of general linear algebraic
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding
errors in arithmetic floating-point operations. From these representations strict optimal
componentwise error and residual bounds are derived. Further, stability estimates for the
solutions are discussed. The error bounds for the solutions of triangular linear systems are
compared to the optimal error bounds for the solutions by back substitution and by Gaussian
elimination with back substitution, respectively. The results confirm in a very
In this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.
In many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreIn this paper, we propose a new approach of regularization for the left censored data (Tobit). Specifically, we propose a new Bayesian group Bridge for left-censored regression ( BGBRLC). We developed a new Bayesian hierarchical model and we suggest a new Gibbs sampler for posterior sampling. The results show that the new approach performs very well compared to some existing approaches.
The following question was raised by L.Fuchs: "what are the subgroups of an abelian group G that can be represented as intersections of pure subgroups of G ? . Fuchs also added that “One of my main aims is to give the answers to the above question". In this paper, we shall define new subgroups which are a family of the pure subgroups. Then we shall answer problem 2 of L.Fuchs by these semi-pure subgroups which can be represented as the intersections of pure subgroups.
In this paper, we introduce the bi-normality set, denoted by , which is an extension of the normality set, denoted by for any operators in the Banach algebra . Furthermore, we show some interesting properties and remarkable results. Finally, we prove that it is not invariant via some transpose linear operators.
The goal of this paper is to construct the linear code, and its dual which corresponding to classification of projective line PG(1,31), we will present Some important results of coding theory, the generator matrix of every linear code in PG(1,31) is found, A parity check matrix is also found . The mathematical programming language GAP was a main computing tool .
This research is concerned with the study of (the aesthetic of constructive relations in linear composition) with what distinguished Arabic calligraphy through the style and artistic method in its construction, and the specifications it carries that enabled it to pay attention to building formations to achieve in its total linear ranges aesthetic values and relationships. Through the research, the models and the exploratory study that he obtained, the researcher was able to raise the research problem in the first chapter according to the following question: What is the aesthetic of constructive relations in linear formation?
The importance of the research in achieving the aesthetics of the formations, which is a wide field according t