Because of cost-effective production and abundant resources of calcium, Ca-ion batteries (CIBs) are an appropriate option to alternate Li-ion batteries (LIBs). A new category of anode materials for CIBs has emerged since the successful synthesis of carbon nanotubes, which are B and N doped derivatives of it. For high-performance CIBs, BC2N nanotube (BC2NNT) has been studied as promising anode materials. In order to comprehend electrochemical attributes, cycling stability, and adsorption behavior of BC2NNT, first-principles computations have been executed. Based on nuclear magnetic resonance computations, two types of hexagonal rings (B2C2N2 (I) and BC4N (II)) were specified that are non-aromatic. Ca has adsorption on B2C2N2 and BC4N with adsorption energy (Ead) values of −47.44 and −28.50 kcal/mol, respectively. Specific capacity value has been determined to be as high as 840 mAh/g. The predicted average open-circuit voltage (OCV) for BC2NNT is 1.56 V, which has a larger value than that of other 2D materials. All mentioned reasons provide BC2NNT as an acceptable anode material for use in CIBs. In present research, results may create new ways of designing favorable boron-carbon-nitrogen based anode materials for CIBs.
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreThe most prevalent chronic complication of diabetes mellitus is diabetic neuropathy. The pathogenesis of diabetic neuropathy is exacerbated by hyperglycemia-induced oxidative stress, which causes nerves to deteriorate in a programmed manner. Many clinical trials depend on supplement in an attempt to improve neuropathy symptoms such as (pain & tingling) and patient quality of life, one of them is Coenzyme Q10 which is reported to have an anti-inflammatory and antioxidant effects, and was totally nontoxic and non-reported side effects. This study aimed to evaluate using a Coenzyme Q10 supplement as an adjuvant therapy to gabapentin to improve the clinical symptoms of diabetic neuropathy in relation to its anti-inflammatory and antioxid
... Show MoreAqueous extract of poppy plant) Papaver nudicaule) with five concentrations (50, 100, 150, 200 and 250) mg/l were used to anesthetize fingerlings of the common carp Cyprinus carpio (Mean total length 8.91 ± 0.31 cm and mean total weight 7.72 ± 1.19 gm) instead of the traditional use of MS-222. Results showed that extracted solution of poppy have partial and overall anesthesia effect on these fishes with inverse relationship between the concentrations used and the time needed to reach partial and overall anesthesia, and also direct relationship between concentrations used and time needed for fish recovery. Best results were obtained by using a concentration of 250 mg/l, where time for partial anesthesia was 8 ± 1.52 m
... Show MoreThis study explored the development and qualities of the response of electrochemical properties of enrofloxacin-selective electrodes using precipitation based on producing phosphotungstic, after utilizing a matrix of polyvinyl chloride (PVC) and dibutyl phthalate or dibutyl phosphate as a plasticizer. The resulting membrane sensors were an enrofloxacin-phosphotungstic electrode (sensors 1) and an ENR-DOP-PTA electrode (sensors 2). Linear responses of (ENR-DBPH-PTA) and (ENR-DOP-PTA) within the concentration ranges of 2.1×10-6-10-1 and 3.0×10-6-10-2 mol. L-1, respectively, for both sensors were observed. Slopes of 51.61±0.24 and 39.40± 0.16 mV/decade and pH ranges equal to 2.5-8.5
... Show MoreWater pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed
... Show MoreThe measurement data of the raw water quality of Tigris River were statistically analyzed to measure the salinity value in relation to the selected raw water quality parameters. The analyzed data were collected from five water treatment plants (WTPs) assembled alongside of the Tigris River in Baghdad: Al-Karkh, Al-Karama, Al-Qadisiya, Al-Dora, and Al-Wihda for the period from 2015 to 2021. The selected parameters are total dissolved solid (TDS), electrical conductivity (EC), pH and temperature. The main objective of this research is to predicate a mathematical model using SPSS software to calculate the value of salinity along the river, in addition, the effect of electrical conductivi