Because of cost-effective production and abundant resources of calcium, Ca-ion batteries (CIBs) are an appropriate option to alternate Li-ion batteries (LIBs). A new category of anode materials for CIBs has emerged since the successful synthesis of carbon nanotubes, which are B and N doped derivatives of it. For high-performance CIBs, BC2N nanotube (BC2NNT) has been studied as promising anode materials. In order to comprehend electrochemical attributes, cycling stability, and adsorption behavior of BC2NNT, first-principles computations have been executed. Based on nuclear magnetic resonance computations, two types of hexagonal rings (B2C2N2 (I) and BC4N (II)) were specified that are non-aromatic. Ca has adsorption on B2C2N2 and BC4N with adsorption energy (Ead) values of −47.44 and −28.50 kcal/mol, respectively. Specific capacity value has been determined to be as high as 840 mAh/g. The predicted average open-circuit voltage (OCV) for BC2NNT is 1.56 V, which has a larger value than that of other 2D materials. All mentioned reasons provide BC2NNT as an acceptable anode material for use in CIBs. In present research, results may create new ways of designing favorable boron-carbon-nitrogen based anode materials for CIBs.
Abstract A descriptive correlation study which was utilizing an assessment approach, was carried out from November 19th, 2002 through April 30, 2004 in order to assess the psychosocial domain of the quality of life for the infertile men. A purposive sample of (200) men with infertility was selected from the High Institute for Embryo Research and Infertility Treatment and Alsamaraee Hospital in Baghdad city. A questionnaire was adoapted and developed of the World Health Organization quality of life scale for the purpose of the study. The questionnaire (WHOQOL) (1998) Reliability and validity of the questionnair
Solar energy is the most abundant renewable energy source. This energy can be converted directly into electricity using solar panels. The fixed tilt solar panels are the most practical and the most widely installed throughout the world. Optimum tilt angle calculation has the advantage that it does not use expensive solar trackers. This research calculates the seasonal optimum tilt angle of solar panels for 17 cities in Iraq and 83 cities in 83 countries distributed around the world. Solar Panel Angle Calculator program was used in calculating the optimum tilt angles from vertical. The optimum tilt angle varies between 6° and 112° throughout the year. This angle for winter, spring/ autumn and summer seasons are found to be between
... Show MoreThis study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod
... Show MoreGingival crevicular fluid (GCF) may reflect the events associated with orthodontic tooth movement. Attempts have been conducted to identify biomarkers reflecting optimum orthodontic force, unwanted sequallea (i.e. root resorption) and accelerated tooth movement. The aim of the present study is to find out a standardized GCF collection, storage and total protein extraction method from apparently healthy gingival sites with orthodontics that is compatible with further high-throughput proteomics. Eighteen patients who required extractions of both maxillary first premolars were recruited in this study. These teeth were randomly assigned to either heavy (225g) or light force (25g), and their site specific GCF was collected at baseline and aft
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreThis study aims to show the effectiveness of immobilization of Chlorella green algae biomass in the form of bead for the removal of lead ions from synthetic polluted water at various operational parameters such as pH (2–6), biosorbent dosage (0.5–20 g/L) and initial concentration (10–100 mg/L). More than 90 % removal efficiency was achieved. FTIR and SEM-EDX analysis of the biosorbent before and after sorption show differences in the functional groups on the adsorbent surface. Langmuir and Freundlich equilibrium isotherm, pseudo-first-order and pseudo-second-order kinetic models were applied to the experimental and results and show good conformity with Langmuir isotherm model and pseudo-second-order kinetic model with c
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show More