Because of cost-effective production and abundant resources of calcium, Ca-ion batteries (CIBs) are an appropriate option to alternate Li-ion batteries (LIBs). A new category of anode materials for CIBs has emerged since the successful synthesis of carbon nanotubes, which are B and N doped derivatives of it. For high-performance CIBs, BC2N nanotube (BC2NNT) has been studied as promising anode materials. In order to comprehend electrochemical attributes, cycling stability, and adsorption behavior of BC2NNT, first-principles computations have been executed. Based on nuclear magnetic resonance computations, two types of hexagonal rings (B2C2N2 (I) and BC4N (II)) were specified that are non-aromatic. Ca has adsorption on B2C2N2 and BC4N with adsorption energy (Ead) values of −47.44 and −28.50 kcal/mol, respectively. Specific capacity value has been determined to be as high as 840 mAh/g. The predicted average open-circuit voltage (OCV) for BC2NNT is 1.56 V, which has a larger value than that of other 2D materials. All mentioned reasons provide BC2NNT as an acceptable anode material for use in CIBs. In present research, results may create new ways of designing favorable boron-carbon-nitrogen based anode materials for CIBs.
In some cases, surgeons need to navigate through the computer system for reconfirmation patients’ details and unfortunately surgeons unable to manage both computer system and operation at the same time. In this paper we propose a solution for this problem especially designed for heart surgeon, by introducing voice activation system with 3D visualization of Angiographic images, 2D visualization of Echocardiography processed video and selected patient’s details. In this study, the processing, approximation of the 3D angiography and the visualization of the 2D echocardiography video with voice recognition control are the most challenging work. The work involve with predicting 3D coronary three from 2D angiography image and also image enhan
... Show MoreUltimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show MoreA new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
Background: Unlike normal EEG patterns, the epileptiform abnormal pattern is characterized by different mor phologies such as the high-frequency oscillations (HFOs) of ripples on spikes, spikes and waves, continuous and sporadic spikes, and ploy2 spikes. Several studies have reported that HFOs can be novel biomarkers in human epilepsy study. S) Method: To regenerate and investigate these patterns, we have proposed three large scale brain network models (BNM by linking the neural mass model (NMM) of Stefanescu-Jirsa 2D (S-J 2D) with our own structural con nectivity derived from the realistic biological data, so called, large-scale connectivity connectome. These models include multiple network connectivity of brain regions at different
... Show MoreMarket share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.