Because of cost-effective production and abundant resources of calcium, Ca-ion batteries (CIBs) are an appropriate option to alternate Li-ion batteries (LIBs). A new category of anode materials for CIBs has emerged since the successful synthesis of carbon nanotubes, which are B and N doped derivatives of it. For high-performance CIBs, BC2N nanotube (BC2NNT) has been studied as promising anode materials. In order to comprehend electrochemical attributes, cycling stability, and adsorption behavior of BC2NNT, first-principles computations have been executed. Based on nuclear magnetic resonance computations, two types of hexagonal rings (B2C2N2 (I) and BC4N (II)) were specified that are non-aromatic. Ca has adsorption on B2C2N2 and BC4N with adsorption energy (Ead) values of −47.44 and −28.50 kcal/mol, respectively. Specific capacity value has been determined to be as high as 840 mAh/g. The predicted average open-circuit voltage (OCV) for BC2NNT is 1.56 V, which has a larger value than that of other 2D materials. All mentioned reasons provide BC2NNT as an acceptable anode material for use in CIBs. In present research, results may create new ways of designing favorable boron-carbon-nitrogen based anode materials for CIBs.
Abstract
This research aims to design a multi-objective mathematical model to assess the project quality based on three criteria: time, cost and performance. This model has been applied in one of the major projects formations of the Saad Public Company which enables to completion the project on time at an additional cost that would be within the estimated budget with a satisfactory level of the performance which match with consumer requirements. The problem of research is to ensure that the project is completed with the required quality Is subject to constraints, such as time, cost and performance, so this requires prioritizing multiple goals. The project
... Show MoreAn experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show MoreThe subject of marketing culture and mental image is one of the important topics in the field of management. There is no study that combines these two variables. The research is important because of the increasing importance of the subject. The future direction of the company in question will support the company's economic and marketing responsibilities. And reflect the company's mental image, as a culture that contributes to changing the reality of the organization investigated by polling the views of a sample of managers in the General Company for Vegetable Oil Industry, which (30) out of the (65) individual, and There are two hypotheses of research: There is a significant
... Show MoreNowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show MoreThis research aims to present a proposed model for disclosure and documentation when performing the audit according to the joint audit method by using the questions and principles of the collective intelligence system, which leads to improving and enhancing the efficiency of the joint audit, and thus enhancing the confidence of the parties concerned in the outputs of the audit process. As the research problem can be formulated through the following question: “Does the proposed model for disclosure of the role of the collective intelligence system contribute to improving joint auditing?”
The proposed model is designed for the disclosure of joint auditing and the role
... Show More
This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show More