Background: Prolapsed intervertebral disc is an important and common cause of low backache. MRI has now become universally accepted investigation for prolapsed intervertebral disc. We, however, regularly come across situations, when MRI shows diffuse disc bulges, even at multiple levels, which cannot be correlated clinically and when such cases are operated, no significant disc prolapse is found resulting in negative exploration. Objective: To evaluate the role of M.R.I. finding not only for diagnosis of disc herniation at lumbar region but also for localization the level of herniation Methods: A prospective study on seventy five symptomatic low backache and MRI confirmed prolapsed intervertebral disc patients at lumbo-sacral region were operated on, all of the cases required excision of disc through posterior approach in knee elbow position. The time between MRI taken and surgery was two weeks, from which the data were taken in a questioner forma which include name , age ,gender , occupation , chief complaint , duration, MRI findings and intra operative finding , from June 2011 to October 2013 at Al- Kindy teaching hospital . Results: In our study 75 patients were diagnosed by clinical examination and MRI finding to have disc herniation at lumbar region . The female more than male ( 36 females , 12 males) and the ratio was 5-1, the accuracy of MRI against intra operative finding in deciding the provisional diagnosis as disc herniation was 68% .The commonest site was L4-5 disc herniation 43 patients (57.3 % ) , and L5-S1 prolapse is the next common disc herniation level 27 patient (36 % ) , L3-L4 disc herniation was two cases (2.7 %) and L4-L5 ,L5-S1 disc herniation was 3 cases (4% ). Conclusion: The most common level was L4-5 followed by L5S1.The MRI is more accurate in diagnosis of the lumbosacral disc herniation and its level in single one is more than
Background: coronavirus 19 is a beta-coronavirus, enveloped and roughly spherical with approximately 60 to 140 nm in diameter with positive-sense single-stranded RNA genome.
Objectives: Measurement of interleukin 6 (IL6) level in a group of patients with confirmed Covid19 infection and its correlation with many hematological and biochemical parameters , mainly lymphocyte , neutrophil count and their ratio , platelet count , serum ferritin , C reactive protein as well as D-dimer level
Subjects and Methods: This study was conducted on 60 PCR positive patients variably affected by COVID-19 , cases collected sequentially from June till November 20
... Show MoreBackground: Rheumatoid arthritis (RA) is an autoimmune disorder that involves autoantibodies attacking and weakening joints. RA is characterized by leukocyte (Monocyte, Lymphocyte mast cell .etc) infiltrations into the synovial compartment leading to inflammation in the synovial membrane. Synovitis leads to the release of pro-inflammatory cytokines, matrix metalloproteinases, chemokines, complement proteins, and growth factors. Objective: The current study pointed to verify the diagnostic values of interleukin -17 A and interleukin -18 in Rheumatoid arthritis (RA) patients and the effect of treatment thereon. Study subjects and methods: A total of 88 samples with RA were selected from the health clinics of AL-Yarmouk
... Show MoreIn this research, a sensor for chemical solutions was designed and formed using optical fiber-based on a surface Plasmon resonance technology. A single-mode optical fiber with three different diameters (25, 45 and 65) µm was used, respectively. The second layer of the low refractive fiber was replaced by gold, which was electrically deposited at 40 µm thickness. For each of the three types of optical fiber, different saline concentrations (different index of refraction) were used to evaluate the performance of the refractive index sensor (chemical sensor) by measuring its sensitivity and resolutions. The highest values we could get for these two parameters were 240mm/RIU, and 6*10-5 RIU respectively, when the diameter of a
... Show MoreOptical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.
The possibility of using the magnetic field technique in prevention of forming scales in heat exchangers pipes using
hard water in heat transfer processes, also the studying the effective and controllable parameters on the mechanism of
scale formation.
The new designed heat exchanger experimental system was used after carrying out the basic process designs of the
system. This system was used to study the effect of the temperature (40-90 °C) and water flow rate (0.6-1.2 L/min) on
the total hardness with time as a function of precipitation of hardness salts from water and scale formation.
Different magnetic field designs in the heat exchanger experimental system were used to study the effect of magnetic
field design a
In this paper, the developed sprite allocation method is designed to be coherent with the introduced block-matching method in order to minimize the allocation process time for digital video. The accomplished allocation process of sprite region consists of three main steps. The first step is the detection of sprite area; where the sequence of frames belong to Group of Video sequence are analysed to detect the sprite regions which survive for long time, and to determine the sprite type (i.e., whether it is static or dynamic). Then as a second step, the flagged survived areas are passed through the gaps/islands removal stage to enhance the detected sprite areas using post-processing operations. The third step is partitioning the sprite area in
... Show MoreIn this work, a magnetic switch was prepared using two typesof ferrofluid materials, the pure ferrofluid and ferrofluid doped with copper nanoparticles (10 nm). The critical magnetic field (Hc) and the state of magnetic saturation (Hs) were studied using three types of laser sources. The main parameters of the magnetic switch measured using pure ferrofluid and He-Ne Laser source were Hc(0.5 mv, 0.4 G), Hs (8.5 mv, 3 G). For the ferrofluid doped with copper nanoparticles were Hc (1 mv, 4 G), Hs (15 mv, 9.6 G), Using green semiconductor laser for the Pure ferrofluid were Hc (0.5 mv, 0.3 G) Hs (15 mv, 2.9 G). While the ferrofluid doped with copper nanoparticles were Hc (0.5 mv, 1 G), Hs (12 mv, 2.8 G) and by using the violet semiconductor l
... Show MoreManganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show More