A rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium is studied. The method is based on the interaction of chromium with indigo carmine dye in acidic medium and the presence of oxalates as a catalyst for interaction, and after studying the absorption spectrum of the solution resulting observed decrease in the intensity of the absorption. As happened (Bleaching) for color dye, this palace and directly proportional to the chromium (VI) amount was measured intensity of the absorption versus solution was figurehead at a wavelength of 610 nm. A plot of absorbance with chromium (VI) concentration gives a straight line indicating that Beer’s law has been obeyed over the range of 0.5
... Show MoreA rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium (VI) was studied. The method is based on the reaction of chromium (VI) with promethazine forming a red colored species by chromium in hydrochloric acid medium and exhibits a maximum absorbance at 518 nm. A plot of absorbance with chromium (VI) gives a straight line indicating that Beer’s law has been obeyed over the range concentration of 0.05-4.0 µg/ml with a molar absorptivity of chromium(VI) 2.04  104 l.mol-1.cm-1 , Sandell’s sensitivity index of 0.0025 µg.cm-2 while the limit of detection (LOD) was found to be 0.0924 µg.ml
... Show MoreIn this work, CdO:In/Si heterojunction solar cell has been made by vacuum evaporation of cadmium oxide doped with 1% of indium thin film onto glass and silicon substrates with rate deposition (3.9A/sec) and thickness(≈250nm). XRD was investigated, the transmission was determined in range (300-1100)nm and the direct band gap energy is 2.43 eV, I-V characterization of the cell under illumination was investigated , the cell shows an open circuit voltage (Voc) of 0.6 Volt, a short circuit current density (Jsc) of 12.8 mA/cm2, a fill factor (F.F) of 0.66, and a conversion efficiency (η) of 5.2%.
Nowadays, many new technologies developed in a lot of countries. These technologies are promising in many areas such as environmental monitoring, precision agriculture as well as in animal production. The purpose of this study was to define a better understanding of how new and advanced technologies affect the agriculture and livestock sector alike. Although agriculture and animal husbandry are among the most important sectors, advanced equipment and information technology cannot be used adequately. This situation leads to low production efficiency. It is also known that there can be a significant difference in temperature between the position of the climate control sensor (room temperature) and the area occupied by the animal. This study e
... Show MoreThis study is concerned with making comparison in using different geostatistical methods for porosity distribution of upper shale member - Zubair formation in Luhais oil field which was chosen to study.
Kriging, Gaussian random function simulation and sequential Gaussian simulation geostatistical methods were adopted in this study. After preparing all needed data which are contour map, well heads of 12 wells, well tops and porosity from CPI log. Petrel software 2009 was used for porosity distribution of mentioned formation in methods that are showed above. Comparisons were made among these three methods in order to choose the best one, the comparing cri
The present work aims to improve the flux of forward osmosis with the use of Thin Film Composite membrane by reducing the effect of polarization on draw solution (brine solution) side.This study was conducted in two parts. The first is under the effect of polarization in which the flux and the water permeability coefficient (A) were calculated. In the second part of the study the experiments were repeated using a circulating pump at various speeds to make turbulence and reduce the effect of polarization on the brine solution side.
A model capable of predicting water permeability coefficient has been derived, and this is given by the following equations:
Z=Z0 +C.R.T/9.8(d2/D2+1) [Exp. [-9.8(d