Undoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechanism, possible reasons, as well as techniques, to reduce the rutting in order to offer long service life and safe roadways. To this end, the need has been arising for this research which deals mainly with a thorough review of the existing literature to highlight some key points for the researchers and pavement engineers related to rutting mechanism, measurement, and criteria, both intrinsic (mixture variables) and extrinsic (traffic and temperature) contributory factors to rutting, material characterization, test methods, and prediction methodologies, as well as possible ways to minimize the rutting distress in asphalt concrete pavement. So far, this research attempts to bridge the gap in the literature that frequently only addresses a single aspect of rutting by providing an in-depth review of rutting in asphalt concrete and thereby offers a complete comprehensive understanding of this major distress type.
This study is a complementary one to an extended series of research work that aims to produce a thermodynamiclly stable asphalt –sulfur blend. Asphalt was physically modified wiht different percentages of asphaltenes , oxidized asphaltenes and then mixed with sulfur as an attempt to obtaine a stable compatible asphalt-sulfur blend. The homogeneneity of asphalt-asphaltenes[oxidized asphaltenes]-sulfur blends were studied microscopically and the results are prsented as photomicrographs. Generally more stable and compatible asphalt-sulfur blends were obtained by this treatment.
In this review, previous studies on the synthesis and characterization of the metal Complexes with paracetamol by elemental analysis, thermal analysis, (IR, NMR and UV-Vis (spectroscopy and conductivity. In reviewing these studies, the authors found that paracetamol can be coordinated through the pair of electrons on the hydroxyl O-atom, carbonyl O-atom, and N-atom of the amide group. If the paracetamol was a monodentate ligand, it will be coordinated by one of the following atoms O-hydroxyl, O-carbonyl or N-amide. But if the paracetamol was bidentate, it is coordinated by atoms (O-carbonyl and N-amide), (O-hydroxyl and N-amide) or (O-carbonyl and O-hydroxyl). The authors also found that free paracetamol and its complexes have antimicrobial
... Show MoreAASAH Enass J Waheed, Shatha MH Obaid, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2019 - Cited by 5
Enamel White Spot Lesions (EWSLs) are a common dental condition characterized by being opaque or chalky white in appearance. In this review, an overview of the etiology, prevention, and treatment techniques for EWSLs is presented. Enamel demineralization caused by bacteria in dental plaque which releases acids upon the consumption of fermentable carbohydrates causing mineral loss is thought to be the main cause of those lesions, which could be predisposed through orthodontic treatment, poor diet, inadequate oral hygiene and certain medical conditions. So, sustaining an adequate carbohydrate consumption, proper fluoride exposure and good oral hygiene are some of the practices which aid in these lesions’ prevention. Although the suc
... Show MoreBackground: Maxillary sinusitis can arise after sinus floor elevation surgery and should be treated immediately to prevent further complications which included dental implants failure, graft lost, and oro-antral fistula. This is the first systematic review to assess the incidence, causes, and treatment of sinusitis after sinus lift surgery. Materials and methods: An electronic search included MEDLINE (PUBMED) data base site was carried out for articles involving development of sinusitis after sinus lift surgery from September 1997 up to April, 8, 2017. The search was done and reviewed by two independent authors. Results: The total results of electronic search were (182) abstracts and articles, the extracted articles which involved develo
... Show MoreMT Suhail, SA Hussein, MN Abdulhussein, WQ Abdaullateef, M khairallah Aid…, Migration Letters, 2024
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
When the drawdown pressure amounts to a value below the dew point pressure, a minor droplet of condensate is shaped and accumulated in the close area of wellbore. As the accumulation happens, the saturation of the liquid will grow and a reduction in gas relative permeability will happen, therefore it will affect the productivity. Generally, condensate baking problem in gas wells is being deliberated and studied and numerous techniques have been suggested to solve the problem. The studying of condensate banking dynamics is essential to evaluate the productivity and behavior of the wells of the gas fields.
In this research work, a new type of concrete based on sulfur-melamine modification was introduced, and its various properties were studied. This new type of concrete was prepared based on the sulfur-melamine modification and various ingredients. The new sulfur-melamine modifier was fabricated, and its fabrication was confirmed by IR spectroscopy and TG analysis. The surface morphology resulted from this modifier was studied by SEM and EDS analysis. The components ratios in concrete, chemical and physical characteristics resulted from sulfur-melamine modifier, chemical and corrosion resistance of concrete, stability of concrete against water adsorption, stability of concrete against freezing, physical and mechanical properties and durabi
... Show More