Undoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechanism, possible reasons, as well as techniques, to reduce the rutting in order to offer long service life and safe roadways. To this end, the need has been arising for this research which deals mainly with a thorough review of the existing literature to highlight some key points for the researchers and pavement engineers related to rutting mechanism, measurement, and criteria, both intrinsic (mixture variables) and extrinsic (traffic and temperature) contributory factors to rutting, material characterization, test methods, and prediction methodologies, as well as possible ways to minimize the rutting distress in asphalt concrete pavement. So far, this research attempts to bridge the gap in the literature that frequently only addresses a single aspect of rutting by providing an in-depth review of rutting in asphalt concrete and thereby offers a complete comprehensive understanding of this major distress type.
The aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4. The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determination (R2). The first techniqu
... Show MoreThe aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4. The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determinatio
... Show MoreIn the last decades, using mineral admixture in concrete became very necessary to improve concrete properties and reduce CO2 emissions associated with the cement production process. Subsequently, more sustainable concrete can be obtained. Ternary blended cement containing two different types of mineral admixture can achieve ambitious steps in this trend. In this research, the synergic effects of mineral admixtures in ternary blended cement and its effects on concrete fresh properties, strength, durability, and efficiency factors of mineral admixture in ternary blended cement, were reviewed. The main conclusion reached after reviewing many literature pieces is that the concrete with ternary blended cement
... Show MoreUnderstanding energy metabolism and intracellular energy transmission requires knowledge of the function and structure of the mitochondria. Issues with mitochondrial morphology, structure, and function are the most prevalent symptoms. They can damage organs such as the heart, brain, and muscle due to a variety of factors, such as oxidative damage, incorrect metabolism of energy, or genetic conditions. The control of cell metabolism and physiology depends on functional connections between mitochondrial and biological surroundings. Therefore, it is essential to research mitochondria in situ or in vivo without isolating them from their surrounding biological environment. Finding and spotting abnormal alterations in mitochondria is the
... Show MoreContinuous escalation of the cost of generating energy is preceded by the fact of scary depletion of the energy reserve of the fossil fuels and pollution of the environment as developed and developing countries burn these fuels. To meet the challenge of the impending energy crisis, renewable energy has been growing rapidly in the last decade. Among the renewable energy sources, solar energy is the most extensively available energy, has the least effect on the environment, and is very efficient in terms of energy conversion. Thus, solar energy has become one of the preferred sources of renewable energy. Flat-plate solar collectors are one of the extensively-used and well-known types of solar collectors. However, the effectiveness of the coll
... Show MorePhenol condensed with β-keto esters via Pechmann condensation to form derivatives of Coumarin in various reaction conditions by two ways. Present paper is comparative study of synthesis Coumarin with the yield of product , reaction time and reaction conditions.
In the current century, nanotechnology has gained great interest due to its ability to modify the size of metals to the nanoscale, which dramatically changes the physical, chemical, and biological characteristics of metals relative to their bulk counterparts. The approaches used to create nanoparticles (NPs) are physical, و chemical and وbiological. The shortcomings in physical and chemical synthesis approaches, such as the generation of toxic by-products, and energy consume as they require high temperature, pressure, power and lethal chemicals, contributed to an increased interest in biological synthesis by plants. Scientists have created a new filed called as "green nanotechnology" by fusing the idea of sustainability with nanotechno
... Show MoreThe occurrences of invasive candidiasis has increased over the previous few decades. Although Candida albicans considers as one of the most common species of organisms, that cause acquired fungal infections. Candida albicans is an opportunistic fungal pathogen and inherent in as a lifelong, the yeast is present in healthy individuals as a commensal, and can reside harmlessly in human body. However, in immuno-compromised individuals, the fungus can invade tissues, producing superficial infections and, in severe cases, life-threatening systemic infections. This review wills emphasis on virulence factor of C. albicans including (adhesion, invasion, candida proteinase, and phenotypic switching and biofilm formation. I
... Show MoreWellbore instability is a significant problem faced during drilling operations and causes loss of circulation, caving, stuck pipe, and well kick or blowout. These problems take extra time to treat and increase the Nonproductive Time (NPT). This paper aims to review the factors that influence the stability of wellbores and know the methods that have been reached to reduce them. Based on a current survey, the factors that affect the stability of the wellbore are far-field stress, rock mechanical properties, natural fractures, pore pressure, wellbore trajectory, drilling fluid chemicals, mobile formations, naturally over-pressured shale collapse, mud weight, temperature, and time. Also, the most suitable ways to reduce well
... Show More