Cladophora and Spirulina algae biomass have been used for the removal of Tetracycline (TC) antibiotic from aqueous solution. Different operation conditions were varied in batch process, such as initial antibiotic concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. The result showed that the maximum removal efficiencies by using 1.25 g/100 ml Cladophora and 0.5 g/100 ml Spirulina algae biomass were 95% and 94% respectively. At the optimum experimental condition of temperature 25°C, initial TC concentration 50 mg/l, contact time 2.5hr, agitation speed 200 rpm and pH 6.5. The characterization of Cladophora and Spirulina biomass by Fourier transform infrared (FTIR) indicates that the presenc
... Show MoreCoated sand (CS) filter media was investigated to remove phenol and 4-nitrophenol from aqueous solutions in batch experiments. Local sand was subjected to surface modification as impregnated with iron. The influence of process variables represented by solution pH value, contact time, initial concentration and adsorbent dosage on removal efficiency of phenol and 4-nitrophenol onto CS was studied. Batch studies were performed to evaluate the adsorption process, and it was found that the Langmuir isotherm effectively fits the experimental data for the adsorbates better than the Freundlich model with the CS highest adsorption capacity of 0.45 mg/g for 4-nitrophenol and 0.25 mg/g for phenol. The CS was found to adsorb 85% of 4-nitrophenol and
... Show MoreThis research includes a study of the ability of Iraqi porcelanite rocks powder to remove the basic Safranine dye from its aqueous process by adsorption. The experiments were carried out at 298Kelvin in order to determine the effect of the starting concentration for Safranin dye, mixing time, pH, and the effect of ionic Strength. The good conditions were perfect for safranine dye adsorption was performed when0.0200g from that adsorbed particles and the removal max percentage was found be 96.86% at 9 mg/L , 20 minutes adsorption time and at PH=8 and in 298 K. The isothermal equilibrum stoichiometric adsorption confirmed, the process data were examined by Langmuir, Freundlich and Temkin adsorption equations at different temperatures
... Show MoreExtraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show MoreThe electrospun nanofibers membranes have gained considerable interest in water filtration applications. In this work, the fabrication and characterization of the electrospun polyacrylonitrile-based nonwoven nanofibers membrane are reported. Then, the membrane's performance and antifouling properties were evaluated in removing emulsified oil using a cross flow filtration system. The membranes were fabricated with different polyacrylonitrile (PAN) concentrations (8, 11, and 14 wt. %) in N, N-Dimethylformamide (DMF) solvent resulted in various average fiber sizes, porosity, contact angle, permeability, oil rejection, and antifouling properties. Analyses of surface morphology of the fabricated membranes before and after oil removal revealed
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreThis research presents a response surface methodology (RSM) with I‐optimal method of DESIGN EXPERT (version 13 Stat‐Ease) for optimization and analysis of the adsorption process of the cyanide from aqueous solution by activated carbon (AC) and composite activated carbon (CuO/AC) produced by pyro carbonic acid microwave using potato peel waste as raw material. Pyrophosphate 60% (wt) was used for impregnation with an impregnation ratio 3:1, impregnation time of 4 h at 25°C, radiant power of 700 W, and activation time of 20 min. Batch experiments were conducted to determine the removal efficiency of cyanide from aqueous solution to evaluate the influences of various experimental parameters su
Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000) and the damping ratio is varied from (0.4 to 0.8).
The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%,
... Show More