Abstract: An unfavorable complication of root canal is vertical root fracture. The aim of present study is to evaluate the vertical root fracture of treated teeth filled with gutta percha and Resilon obturating material using different sealers. Forty mandibular premolars used in the study. Canals randomly divided into four groups (n=10). Group-A eugenol-based (Endofill) sealer with gutta percha; GroupB epoxy-amine (AH Plus) sealer with gutta percha; Group-C resin-based (Real Seal) sealer with Resilon; or Group-D epoxide-based (Perma Evolution) sealer with gutta percha. Roots mounted vertically in cold cure acrylic blocks and subjected to vertical loading with a crosshead speed of 1mm ̸min. The point at which fracture of the roots occurred
... Show MoreThe study was aimed to evaluate the marketing efficiency of dry Onion crop in Salah al-Deen, as estimate the impact of some quality and quantity factors in the efficiency of marketing process of crop using Tobit regression model. The average marketing efficiency of the research sample was 71.3686%. The marketing margins differed according to the marketing channel followed in marketing the crop. The qualitative and quantitative variables in the model are productivity, family size, distance from the market, educational level. The estimated model revealed that a variable productivity is the most important and influential in marketing efficiency, followed by the variable of the distance between the farm and the market, then the variable
... Show MoreThe study was aimed to evaluate the marketing efficiency of dry Onion crop in Salah al-Deen, as estimate the impact of some quality and quantity factors in the efficiency of marketing process of crop using Tobit regression model. The average marketing efficiency of the research sample was 71.3686%. The marketing margins differed according to the marketing channel followed in marketing the crop. The qualitative and quantitative variables in the model are productivity, family size, distance from the market, educational level. The estimated model revealed that a variable productivity is the most important and influential in marketing efficiency, followed by the variable of the distance between the farm and the market, then the variable
... Show MoreThe research aims to employ one of the most important strategies for recovery from the crisis of the Covid-19 pandemic, which ravaged the economies of the entire world and its various sectors, including the banking sector, through financial technology that is based on digital transformation to achieve financial sustainability and the creation of innovative financial value chains in light of the decline in the banking sector as a result of The negative effects of the Covid-19 pandemic, be guided by the relevant international accounting standards to control the risks associated with financial technology. To recover from the Covid-19 crisis, the research came out with a set of recommendations, most notably financial technology from
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreA field experiment was carried out during the seasons 2016 and 2017 in the farm of the Department of Field Crops Science, College of Agricultural Engineering Sciences-University of Baghdad to evaluate the effect of(Aminopyralid + Flurasulam, Coldinafop-propargyl and Flucarbazone-sodium) herbicides and seeding rate (100, 125 and 150) Kg.ha-1 and the interaction between them in growth characteristics, grain and yield components in wheat (Var. IPA99). The results showed that herbicides used were significantly efficient in studied characteristics compared to weedy treatment. Herbicide Flucarbazone-sodium gave higher weed control after 60 and 90 days of spraying the he
This study focused on a fundamental issue which was represented by ability of Iraqi central bank in facing the difficulty of determining the optimal ratio of liquidity in the Iraqi banks in terms of the balancing between its obligations to the depositors and borrowers, and liquidate their funds on one hand and the risks on the other hand.the search aimed for achieving the goals which represented by identifying the possibility of Iraqi banks to apply the regulations rules and instructions issued by central bank of Iraq in determining ratio of liquidity and its appropriate with Iraqi banks action to implement a reasonable profit to&
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More