This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loading thus, the plate behaving nonlinearly. The governing partial differential equation for the piezo-plate system is transformed into definite ordinary differential equations (ODEs) using the Galerkin approach; hence, multi-input multi-output ODEs are obtained. Simulation experiments are performed to verify the validity of the proposed control structure.
The long-term monitoring of land movements represents the most successful application of the Global Navigation Satellite System (GNSS), particularly the Global Positioning System. However, the application of long term monitoring of land movements depends on the availability of homogenous and consistent daily position time series of stations over a period of time. Such time series can be produced very efficiently by using Precise Point Positioning and Double Difference techniques based on particular sophisticated GNSS processing softwares. Nonetheless, these rely on the availability of GNSS products which are precise satellite orbit and clock, and Earth orientation parameters. Unfortunately, several changes and modifications have been mad
... Show MoreHuge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show MorePresent research is aimed knowing of smart thinking for secondary schools' students. and discover statistically significant differences in Smart Thinking due to the couple variables of (Gender – Branch)
For the purpose of verification of the aims of the research, the researcher has prepared a smart thinking scale, the scale has been applied on sample of secondary schools' students for both Branches (Scientific & Literary One).It was contingent (500) student male and female were chosen stratified random method.
After data analyze the reached results: The Preparatory fourth grade students have smart thinking. Female smart thinking enjoy a much higher degree than males. and Scientific branch students enjoy thinking and much high
in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.
In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreDeveloping a new adaptive satellite images classification technique, based on a new way of merging between regression line of best fit and new empirical conditions methods. They are supervised methods to recognize different land cover types on Al habbinya region. These methods should be stand on physical ground that represents the reflection of land surface features. The first method has separated the arid lands and plants. Empirical thresholds of different TM combination bands; TM3, TM4, and TM5 were studied in the second method, to detect and separate water regions (shallow, bottomless, and very bottomless). The Optimum Index Factor (OIF) is computed for these combination bands, which realized
... Show More