This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loading thus, the plate behaving nonlinearly. The governing partial differential equation for the piezo-plate system is transformed into definite ordinary differential equations (ODEs) using the Galerkin approach; hence, multi-input multi-output ODEs are obtained. Simulation experiments are performed to verify the validity of the proposed control structure.
This paper investigates the simultaneous recovery for two time-dependent coefficients for heat equation under Neumann boundary condition. This problem is considered under extra conditions of nonlocal type. The main issue with this problem is the solution unstable to small contamination of noise in the input data. The Crank-Nicolson finite difference method is utilized to solve the direct problem whilst the inverse problem is viewed as nonlinear optimization problem. The later problem is solved numerically using optimization toolbox from MATLAB. We found that the numerical results are accurate and stable.
The nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.
Buildings such as malls, offices, airports and hospitals nowadays have become very complicated which increases the need for a solution that helps people to find their locations in these buildings. GPS or cell signals are commonly used for positioning in an outdoor environment and are not accurate in indoor environment. Smartphones are becoming a common presence in our daily life, also the existing infrastructure, the Wi-Fi access points, which is commonly available in most buildings, has motivated this work to build hybrid mechanism that combines the APs fingerprint together with smartphone barometer sensor readings, to accurately determine the user position inside building floor relative to well-known lan
... Show MoreIt is commonly known that Euler-Bernoulli’s thin beam theorem is not applicable whenever a nonlinear distribution of strain/stress occurs, such as in deep beams, or the stress distribution is discontinuous. In order to design the members experiencing such distorted stress regions, the Strut-and-Tie Model (STM) could be utilized. In this paper, experimental investigation of STM technique for three identical small-scale deep beams was conducted. The beams were simply supported and loaded statically with a concentrated load at the mid span of the beams. These deep beams had two symmetrical openings near the application point of loading. Both the deep beam, where the stress distribution cannot be assumed linear, and the ex
... Show MoreIn this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.
The concepts of nonlinear mixed summable families and maps for the spaces that only non-void sets are developed. Several characterizations of the corresponding concepts are achieved and the proof for a general Pietsch Domination-type theorem is established. Furthermore, this work has presented plenty of composition and inclusion results between different classes of mappings in the abstract settings. Finally, a generalized notation of mixing maps and their characteristics are extended to a more general setting.
An experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge co
... Show MoreIn this paper,a prey-predator model with infectious disease in predator population
is proposed and studied. Nonlinear incidence rate is used to describe the transition of
disease. The existence, uniqueness and boundedness of the solution are discussed.
The existences and the stability analysis of all possible equilibrium points are
studied. Numerical simulation is carried out to investigate the global dynamical
behavior of the system.
Many of the key stream generators which are used in practice are LFSR-based in the sense that they produce the key stream according to a rule y = C(L(x)), where L(x) denotes an internal linear bit stream, produced by small number of parallel linear feedback shift registers (LFSRs), and C denotes some nonlinear compression function. In this paper we combine between the output sequences from the linear feedback shift registers with the sequences out from non linear key generator to get the final very strong key sequence
In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919 for a previous study. The comparison between the numerical and numerical simulation res
... Show More