Multi-walled carbon nanotubes (MWCNTs) were functionalized by hexylamine (HA) in a promising, cost-effective, rapid and microwave-assisted approach. In order to decrease defects and remove acid-treatment stage, functionalization of MWCNTs with HA was carried out in the presence of diazonium reaction. Surface functionality groups and morphology of chemically-functionalized MWCNTS were characterized by FTIR, Raman spectroscopy, thermogravimetric analysis (DTG), and transmission electron microscopy (TEM). To reach a promising dispersibility in oil media, MWCNTs were functionalized with HA. While the cylindrical structures of MWCNTs were remained reasonably intact, characterization results consistently confirmed the sidewall-functionalization of MWCNTs with HA functionalities. Then, HA-treated MWCNTs-based turbine oil nanofluids (HA-MWCNTs/TO) with different volume fractions were synthesized and employed to be investigated in terms of heat transfer potential. Convective heat transfer coefficient of HA-MWCNTs/TO as a positive parameter and pressure drop as a negative factor were investigated for various volume fractions. While results suggested a weak increase in the pressure drop by MWCNTs loading into the TO, lack of acidic agents, the performance index higher than 1 and a significant increase in the convective heat transfer open a new gateway for introducing this economical product for industrial applications in turbines and can be a capable alternative for conventional TO.
جريت دراسة مختبرية لمعرفة تأثير الزيت الطيار لقشور ثمار نبات النارنج الصفرC. aurantium تجاه النمو السطحي للفطريات Penicillium expansum، Aspergillus flavus و Fusarium oxysporum ، أظهرت نتائج الفعالية التثبيطية للزيت الطيار تأثيراً معنويا متفاوتاً في الفطريات المشمولة بالدراسة، إذ كان الزيت الطيار أكثر تأثيرأَ في الفطر P. expansum تلاه الفطر A. flavus ،في حين كان الفطر oxysporum F.أقل حساسية تجاه الزيت الطيار. بصورة عامة اظهر الزيت الطيار تأثيرا تثبيطيا
... Show More
To identify the importance of the role of succession planning in developing human capital in organizations in light of the accelerating and dynamic events and changes in the work environment, and the research problem indicated the seriousness of employees retiring or leaving their positions for any reason and the extent of its impact on the organization in creating gaps in leadership and problems In managing the talent injection because there will be a shortage of talent, which in turn will affect the general performance of the business in the researched institute, so the importance of research appears in trying to present a set of solutions through which some of the problems facing the organization in quest
... Show MoreThe pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
A security system can be defined as a method of providing a form of protection to any type of data. A sequential process must be performed in most of the security systems in order to achieve good protection. Authentication can be defined as a part of such sequential processes, which is utilized in order to verify the user permission to entree and utilize the system. There are several kinds of methods utilized, including knowledge, and biometric features. The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field. EEG has five major wave patterns, which are Delta, Theta, Alpha, Beta and Gamma. Every wave has five features which are amplitude, wavelength, period, speed and frequency. The linear
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreA frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show More