Precision irrigation applications are used to optimize the use of water resources, by controlling plant water requirements through using different systems according to soil moisture and plant growth periods. In precision irrigation, different rates of irrigation water are applied to different places of the land in comparison with traditional irrigation methods. Thus the cost of irrigation water is reduced. As a result of the fact that precise irrigation can be used and applied in all irrigation systems, it spreads rapidly in all irrigation systems. The purpose of the Precision Agriculture Technology System (precision irrigation) , is to apply the required level of irrigation according to agricultural inputs to the specified location , by using the variation in agricultural lands, in order to obtain more productivity with less agricultural inputs. This way ensures that the cost of agricultural inputs are reduced and environmental protection is done at the same time. In this study, the usability of precision irrigation systems in agricultural operations, as well as the use of global positioning systems with precision irrigation applications is tested.
We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
In this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.
Images hold important information, especially in military and commercial surveillance as well as in industrial inspection and communication. Therefore, the protection of the image from abuse, unauthorized access, and damage became a significant demand. This paper introduces a new Beta chaotic map for encrypting and confusing the color image with Deoxyribonucleic Acid (DNA) sequence. First, the DNA addition operation is used for diffusing each component of the plain image. Then, a new Beta chaotic map is used for shuffling the DNA color image. In addition, two chaotic maps, namely the proposed new Beta and Sine chaotic maps, are used for key generation. Finally, the DNA XOR operation is applied between the generated key and shuffled DNA i
... Show MoreTwo field experiments were carried out for cultivating yellow maize crop Zea mays L. during the autumn planting season 2019 in two sites with soils of different textures. The first site is a loamy texture in one of the fields of the Medhatia Agriculture Division, Babylon Governorate. The second was silty loam by an alluvial mixture in one of the fields of Al-Nouriah Research Station, Ministry of Agriculture located in Al-Nouriah sub-district, Al-Qadisiyah governorate. It was found through the results that the uniformity, efficiency, and adequacy of the irrigation efficiency of the sprinkler irrigation method is better than that of the sprinkler irrigation method, and it ranged between (88.6-88.7) for uniformity and (84-86)% of the irrigatio
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreFeature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe
... Show MoreZainab M. Al-Bahrani Department of Oral Diagnosis, College of Dentistry, University of Baghdad, Baghdad, Iraq.Corresponding author: Zainab M. Al-Bahra...