Precision irrigation applications are used to optimize the use of water resources, by controlling plant water requirements through using different systems according to soil moisture and plant growth periods. In precision irrigation, different rates of irrigation water are applied to different places of the land in comparison with traditional irrigation methods. Thus the cost of irrigation water is reduced. As a result of the fact that precise irrigation can be used and applied in all irrigation systems, it spreads rapidly in all irrigation systems. The purpose of the Precision Agriculture Technology System (precision irrigation) , is to apply the required level of irrigation according to agricultural inputs to the specified location , by using the variation in agricultural lands, in order to obtain more productivity with less agricultural inputs. This way ensures that the cost of agricultural inputs are reduced and environmental protection is done at the same time. In this study, the usability of precision irrigation systems in agricultural operations, as well as the use of global positioning systems with precision irrigation applications is tested.
The study was conducted to measure diatom species diversity in the lotic ecosystem across the Wasit Province for 12 months. The quantitative study of diatoms (phytoplankton) was investigated in the Tigris river. The density of algae was ranged from 60989 cell×103/l to 112780.82 cell×103/l in the five sites. These algae were belonging to 39 genera. The richness index values ranged from 1.53 at site 5 in January 2016 to 6.34 at site 1 and June2015. Shannon-Weiner diversity index (H´) was 2.33 in February 2016 and 3.72 in June 2015 both values at site 3, whereas Evenness index was 0.54 at site 5 in March2016 and 0.98 at site 1 in both August2015 and May2016. The lack of homogeneity of the appearance of species indicates the dominance of a
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show MoreThe corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that
... Show MoreThe estimation of rock petrophysical parameters is an essential matter to characterize any reservoir. This research deals with the evaluation of effective porosity (Pe), shale volume (Vsh) and water saturation (Sw) of reservoirs at Kumait and Dujalia fields, which were analyzed from well log and seismic data. The absolute acoustic impedance (AI) and relative acoustic impedance (RAI) were derived from a model which is based on the inversion of seismic 3-D post-stack data. NahrUmr formation’s sand reservoirs are identified by the RAI section of the study area. Nahr Umr sand-2 unit in Kumait field is the main reservoir; its delineation depends on the available well logs and AI sections information. The results of well logging i
... Show MoreIn this research, the performance of electrocoagulation (EC) using aluminum (Al) electrodes with Monopolar- parallel (MP-P), and bipolar - series (BP-S) arrangement for simultaneous removal of dissolved silica, and hardness ions (calcium, and magnesium) from synthetic blowdown water of cooling tower were investigated. The effects of current density, initial pH and time of electrolysis on the removal efficiency were studied in a batch stirred unit to find out the best-operating conditions. The obtained results for each target species are evidence that BP-S approach is the best for both electrodes configuration operated at a Current density of 1mA/cm2 through 30 min of treatment and pH=10 with the removal of
... Show MoreIn order to reduce hydrostatic pressure in oil wells and produce oil from dead oil wells, laboratory rig was constructed, by injecting LPG through pipe containing mixture of two to one part of East Baghdad crude oil and water. The used pressure of injection was 2.0 bar, which results the hydrostatic pressure reduction around 246 to 222 mbar and flow rate of 34.5 liter/hr fluid (oil-water), at 220 cm injection depth. Effects of other operating parameters were also studied on the behavior of two phase flow and on the production of oil from dead oil wells.
Direct contact membrane distillation is an effective method for production of fresh water from saline water. In this study two samples were used as feed solutions; the first one was RO waste from Al-Hilla Coca-Cola Factory (TDS= 2382 mg/l) and the other was Haji Ali drainage water (TDS= 4127 mg/l). Polytetrafluoroethylene (PTFE) hydrophobic membrane supported with polypropylene (PP) was used as flat sheet form with plate and frame cell. Results proved that membrane distillation is an effective technique to produce fresh water with high quality from brine with low salinity content. With membrane area of 8x8 cm2, the volume of treated water decreased from 34.97 ml at first half hour to 33.02 ml after 180 min of
... Show MoreWater is crucial for all known forms of life without providing any calories or organic nutrients, while many people, especially in developing countries, may not be able to access pure and safe drinking water. They could lose their lives or become sick because waterborne diseases could contaminate the water, and when the chemical and/or physical properties of the water are not within the national and international standards. Thus, the present study aimed to evaluate water quality of the Halabja drinking water and Sirwan river. Halabja city is located to north of Iraq, north-east of the capital Baghdad. Every week of the year 2019, apart from official holidays, water samples were collected from each of river and several areas (4-10 section
... Show MoreThe Mishrif Formation is one of the most important geological formations in Iraq consisting of limestone, marl, and shale layers since it is one of the main oil producing reservoirs in the country, which contain a significant portion of Iraq's oil reserves. The formation has been extensively explored and developed by the Iraqi government and international oil companies, with many oil fields being developed within it. The accurate evaluation of the Mishrif formation is key to the successful exploitation of this field. However, its geological complexity poses significant challenges for oil production, requiring advanced techniques to accurately evaluate its petrophysical properties.
This study used advanced well-logging analysi
... Show More