Studies were conducted to screen eight sunflower (Helianthus annuus L.) genotypes for their allelopathic potential against weeds and wheat crop, which customarily follows sunflower in Iraq. All sunflower genotypes significantly inhibited the total number and biomass of companion weeds and the magnitude of inhibition was genotype dependent. Among the eight genotypes tested, Sin-Altheeb and Coupon were the most weed-suppressing cultivars, and Euroflor and Shumoos were the least. A subsequent field experiment indicated that sunflower residues incorporated into the field soil significantly inhibited the total number and biomass of weeds growing in the wheat field. Sunflower genotypes Sin-Altheeb and Coupon appeared to inhibit total weed number and biomass more and significantly increased wheat yield compared with the least-suppressive genotypes (Euroflor and Shumoos). Chromatographic analyses by HPLC revealed the presence of 13 secondary metabolites in residues of the tested sunflower genotypes. All the isolated compounds appeared to be phenolic, with the exception of terpinol, which is a terpenoid derivative. The total concentration of Phytotoxins (phenolic compounds) was found to be higher in the most-suppressive potential genotypes compared with the least-suppressive genotypes.
This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show MoreAlgorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.
Elzaki Transform Adomian decomposition technique (ETADM), which an elegant combine, has been employed in this work to solve non-linear Riccati matrix differential equations. Solutions are presented to demonstrate the relevance of the current approach. With the use of figures, the results of the proposed strategy are displayed and evaluated. It is demonstrated that the suggested approach is effective, dependable, and simple to apply to a range of related scientific and technical problems.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
Obesity and cancer are two major epidemics of this century. Obesity is related to a higher risk of many types of cancer. Studies have accessed circulating adipokines, as key-mediators in obesity and breast cancer. The study is aimed to examine the circulating levels of insulin-like growth factor-1, leptin, adiponectin, and resistin in premenopausal Iraqi women with breast cancer. The current study was performed during the period from June 2019 to December 2019 at Oncology unit/ Medical City Hospital-Baghdad. A total of 90 premenopausal women with BC/ stage II and III after 2nd dose of chemotherapy were contributed in this study as patients group. Their ages ranged from (35- 50) years in addition to 90 premenopausal healthy women wer
... Show More