Preferred Language
Articles
/
fRfxx40BVTCNdQwCCRt6
Co-small monoform modules
...Show More Authors

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investigated. Other generalizations of co-small monoform are introduced.

Scopus
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Weak Essential Submodules
...Show More Authors

A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Some Results on Weak Essential Submodules
...Show More Authors

Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Some Results on Weak Essential Submodules
...Show More Authors

Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
On P-Essential Submodules
...Show More Authors

Let  be a commutative ring with identity and let   be an R-module. We call an R-submodule  of  as P-essential if  for each nonzero prime submodule  of    and 0  . Also, we call an R-module  as P-uniform if every non-zero submodule  of  is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule  of a multiplication R-module  becomes P-essential. Moreover, various properties of P-essential submodules are considered.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
W-Closed Submodule and Related Concepts
...Show More Authors

    Let R be a commutative ring with identity, and M be a left untial module. In this paper we introduce and study the concept w-closed submodules, that is stronger form of the concept of closed submodules, where asubmodule K of a module M is called w-closed in M, "if it has no proper weak essential extension in M", that is if there exists a submodule L of M with K is weak essential submodule of L then K=L. Some basic properties, examples of w-closed submodules are investigated, and some relationships between w-closed submodules and other related modules are studied. Furthermore, modules with chain condition on w-closed submodules are studied.   

View Publication Preview PDF
Crossref
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
On Essential (Complement) Submodules with Respect to an Arbitrary Submodule
...Show More Authors

 

View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
On Semiannahilator Supplement Submodules
...Show More Authors

Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Quasi-primary Submodules
...Show More Authors

      In this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module  over a commutative ring  with identity. This concept is a generalization of prime and primary submodules, where a proper submodule  of an -module  is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either  or , for some . Many basic properties, examples and characterizations of this concept are introduced.

View Publication Preview PDF
Crossref