Background: Bone mineral density has been assessed using Dual-Energy X-Ray Absorptiometry. Bone mineral density is measured according to the results of the Dual-Energy X-Ray Absorptiometry examination of the vertebral column and pelvis. Although diabetes mellitus type II (DM) is known to affect bone mineral density, at the present time this particular relationship is not clear. Objective: The aim of current study was to evaluate the effects of type II diabetes mellitus on bone mineral density of the upper and lower limbs as well as gender differences. Patients and Methods: This study involved 165 patients complaining of bone pain (85 males and 80 females), 85 patients of who suffered from diabetes, involving both genders. In addition, 90 apparently healthy volunteers had been studied and were considered to constitute the control group. All individuals (255) were studied regarding their bone mineral density via Dual-Energy X-Ray Absorptiometry for all parts of the body. Results: The Dual-Energy X-Ray Absorptiometry exam revealed highly statistically significant differences between the sides of the body in the same person. In addition, there were significant differences in bone mineral density between females and males, as well as between the control and patient groups with type II diabetes mellitus. Conclusion: Our results indicated that the bone mineral density of women was less than that in men in all cases (normal, osteoporosis, and diabetes mellitus type II (DM) with osteoporosis). Other results obtained from this research revealed that diabetes mellitus type II (DM) can be considered to be one of the major causes of osteoporosis in the general population
Fibromuscular dysplasia (FMD) is a noninflammatory and nonatherosclerotic arteriopathy that is characterized by irregular cellular proliferation and deformed construction of the arterial wall that causes segmentation, constriction, or aneurysm in the intermediate-sized arteries. The incidence of FMD is 0.42–3.4%, and the unilateral occurrence is even rarer. Herein, we report a rare case of a localized extracranial carotid unilateral FMD associated with recurrent transient ischemic attacks (TIAs) treated by extracranial-intracranial bypass for indirect revascularization. The specific localization of the disease rendered our case unique.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIn digital images, protecting sensitive visual information against unauthorized access is considered a critical issue; robust encryption methods are the best solution to preserve such information. This paper introduces a model designed to enhance the performance of the Tiny Encryption Algorithm (TEA) in encrypting images. Two approaches have been suggested for the image cipher process as a preprocessing step before applying the Tiny Encryption Algorithm (TEA). The step mentioned earlier aims to de-correlate and weaken adjacent pixel values as a preparation process before the encryption process. The first approach suggests an Affine transformation for image encryption at two layers, utilizing two different key sets for each layer. Th
... Show MoreThe present study was carried out to determine the bacterial isolates and study their antimicrobial susceptibility in case of burned wound infections. 70 burn wound swabs were taken from patients, who presented invasive burn wound infection from both sex and average age of 3-58 years, admitted to teaching medical Al- Kendi hospital from October 2007 to June 2008. Pseudomonas aeruginosa was found to be the most common isolate (48.9%) followed by Staphylococcus aureus (24.4%), Citrobacter braakii (13.3%), Enterobacter spp. (11.1%), Coagulase-negative Staphylococci (11.1%), Proteus vulgaris (6.66%), Corynebacterium spp. (6.66%), Micrococcus (6.66%), Proteus mirabilis (4.44%), Enterococcus faecalis (4.44%), E.coli (4.44%), Klebsiella spp. (2.22
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreIn this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests
... Show MoreThe aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreIn this research, the use of natural materials like wool and cannabis as intermediate reinforcement for prosthetic limbs due to their comfort, affordability, and local availability was discussed. As part of this study on below-the-knee (BK) prosthetic sockets, two sets of samples were made using a vacuum method. These sets were made of natural fiber-reinforced polymer composites with lamination 80:20: group (Y) had 4 perlon, 1 wool 4 perlon, and group (G) had 4 perlon, 1 cannabis 4 perlon. The two groups were compared with a socket made of polypropylene. Tensile testing was used to determine the mechanical characteristics of the socket materials. The Y group has a yield stress of 17 MPs, an ultimate strength of 18.75 MPa, and an elastic
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Background: diagnostic radiology field workers are at elevated risk level for systemic and oral diseases like periodontal diseases. This study was aimed to estimate the periodontal condition and salivary flow rate among diagnostic radiology workers. Material and method: The sample for this study consisted of a study group radiographers (forty subjects) working for 5 years at least and control group consisted of nurses and laboratory workers away from radiation (forty subjects) in Baghdad hospitals. All the 80 subjects aged 30-40 year-old and looking healthy without systemic diseases. Plaque, gingival, periodontal pocket depth and clinical attachment loss indices were used for recording the periodontal conditions. Under standardized condi
... Show More