Objectives To tailor composites of polyethylene–hydroxyapatite to function as a new intracanal post for the restoration of endodontically treated teeth (ETT). Methods Silanated hydroxyapatite (HA) and zirconium dioxide (ZrO2) filled low-density polyethylene (LDPE) composites were fabricated by a melt extrusion process and characterised using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The flexural strength and modulus were determined in dry state and post ageing in simulated body fluid and fractured surfaces analysed by SEM. The water uptake and radiographic appearance of the experimental composites were also measured and compared with a commercially known endodontic fibre post. Data were submitted to one-way analysis of variance (ANOVA) and post hoc Tukey multiple comparison tests at a level of significance P < 0.05. Results The LDPE/HA composites were structurally flexible and the HA content had a significant effect on the flexural strength and modulus. A univariate analysis of variance showed no significant differences in modulus and strength (P < 0.05) post accelerated ageing in simulated body fluid with very low water uptake. The melting point of the LDPE/HA composites ranged between 135 and 136 °C, which would facilitate removal in case of retreatment using conventional dental heating devices. The inclusion of HA reduced the damping thereby enhancing dimensional stability, whilst the addition of zirconia yielded a semi-translucent material that was sufficiently radiopaque, comparable to commercial posts, thus yielding aesthetic materials. Conclusions Innovative materials for restoration of ETT were developed; offering considerable benefits over the currently available material in terms of biomechanical and thermal properties. Clinical significance This study provided a new option for the development of a new intracanal post made up of functional and aesthetic composites.
A numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro
Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreIn this research, we have measured specific activity concentrations in five samples for raw materials used in ceramic industry in AL-Ramadi ceramic factory by using (HPGe) detector. The results have shown that, the average specific activity, for 238U, 232Th and 40K are equal to (18.300±6.4 Bq/kg), (17.988±6.1 Bq/kg), (167.952±63.5 Bq/kg), respectively. In order to assess the radiological hazards of the radioactivity in samples, radium equivalent activity, absorbed gamma dose rate, indoor and outdoor annual effective dose rates, gamma Index and both (external and internal) hazard effects have been calculated. All results were found to be less than the allowed global limit given by (UNSCEAR, 2000).
... Show MoreColor is one of the most important elements involved and contributing mainly to designs and visual works, whether they are fixed or mobile, for internal spaces through what color gives it the possibilities on the physical and intellectual level, if the process is linked to the functional performance or the aesthetic value, which is thus included within the system of processors and basic works in Designing the interior spaces and highlighting the functional and aesthetic aspects of them through the executed designs that are linked to certain techniques and mechanisms. Therefore, they are processed according to the references and pressure structures or the creation and modern dealing with materials and designs to implement operations in hi
... Show MoreObjective: Evaluation the national standards for exposure to chemical materials and dusts in The State
Company for Drugs Industry in Samarra.
Methodology: A descriptive evaluation design is employed through the present study from 25th May 2011
to 30th November 2011 in order to evaluate the national standards for exposure chemical materials and dusts
in The State Company for Drugs Industry in Samarra. A purposive (non-probability) sample is selected for the
study which includes (110) workers from the State Company for Drugs Industry in Samarra. Data were
gathered through the workers` interviewed according to the nature of work that they perform. The evaluation
questionnaire comprised of three parts which include the w
The influence of Cr3+ doping on the ground state properties of SrTiO 3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO 3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO 3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO 3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the ban
... Show MoreBackground: Alterations in the microhardness and roughness are commonly used to analyze the possible negative effects of bleaching products on restorative materials. This in vitro study evaluated the effect of in-office bleaching (SDI pola office +) on the surface roughness and micro-hardness of four newly developed composite materials (Z350XT –nano-filled, Z250XT-nano-hybrid, Z250-mico-hybrid and Silorane-silorane based). Materials and methods: Eighty circular samples with A3 shading were prepared by using Teflon mold 2mm thickness and 10mm in diameter. 20 samples for each material, 10 samples for base line measurement (surface roughness by using portable profillometer, and micro-hardness by usingDigital Micro Vickers Hardness Test
... Show MoreMicroencapsulated of paraffin wax which acts as core material of phase change
material covered by polymer was prepared by using rabid (physical-chemical) with lower
energy (green) method. Prepolymer of condensed Melamine-Formaldehyde resin, was
solidified by heat effect gradually and surrounds the Paraffin wax as microcapsules. The
diameter of the prepared capsules was about (170-220) micron which has a proportion with
the prepolymer temperature, otherwise the thermal analysis appears as a best value of
enthalpy (ΔH) which was (12 J/gm) when the prepolymer temperature was (60˚C)
Recently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were
... Show More