The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values significantly affected the permeation flux of the Pb2+ solution but only had a slight effect on the Cd2+ solution. However, Cd2+ rejection was highly improved by increasing the pH value. The rejection of the PES membranes increased greatly as the heavy metal concentration rose, while the heavy metal concentration moderately affected the permeation flux. The maximum rejection of Pb2+ in a single-salt solution was 99%, 97.5%, and 98% for a feed solution containing 10 mg Pb/L at pH 6, 6.2, and 5.7, for PES1, PES2, and PES3, respectively. The maximum rejection of Cd2+ in single-salt solutions was 78%, 50.2%, and 44% for a feed solution containing 10 mg Cd/L at pH 6.5, 6.2, and 6.5, for PES1, PES2, and PES3, respectively. The analysis of the experimental data using the CFSD, CFSK, and CFFP models showed a good agreement between the theoretical and experimental results. The effective membrane thickness and active skin layer thickness were evaluated using the CFFP model, indicating that the Péclet number is important for determining the mechanism of separation by diffusion.
Peer-Reviewed Journal
In this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
In the theoretical part, removal of direct yellow 8 (DY8) from water solution was accomplished using Bentonite Clay as an adsorbent. Under batch adsorption, the adsorption was observed as a function of contact time, adsorbent dosage, pH, and temperature. The equilibrium data were fitted with the Langmuir and Freundlich adsorption models, and the linear regression coefficient R2 was used to determine the best fitting isotherm model. thermodynamic parameters of the ongoing adsorption mechanism, such as Gibb's free energy, enthalpy, and entropy, have also been measured. The batch method was also used for the kinetic calculations, and the day's adsorption assumes first-order rate kinetics. The kinetic studies also show that the intrapar
... Show MoreThe earth-air heat exchanger (EHX) has a promising potential to passively save the energy consumption of traditional air conditioning systems while maintaining a high degree of indoor comfort. The use of EHX systems for air conditioning in commercial and industrial settings offers several environmental benefits and is capable of operating in both standalone and hybrid modes. This study tests the performance and effectiveness of an EHX design in a sandy soil area in Baghdad, Iraq. The area has a climate of the subtropical semi-humid type. Ambient air temperatures and soil temperatures were recorded throughout the months of 2021. During the months of January and June, the temperatures of the inlet and outflow air at varying air veloci
... Show MoreIn this research was conducted to provide a product to analyze the performance sensor fiber optic used to measure and feel the intensity of the electric field results showed obtained that use sensor long gives reactive high electric field strength and a high value for allergic sensor, but that is at the expense of reducing the intensity of the electric field that is detected
The biosorption of Pb (II), Cd (II), and Hg (II) from simulated aqueous solutions using baker’s yeast biomass was investigated. Batch type experiments were carried out to find the equilibrium isotherm data for each component (single, binary, and ternary), and the adsorption rate constants. Kinetics pseudo-first and second order rate models applied to the adsorption data to estimate the rate constant for each solute, the results showed that the Cd (II), Pb (II), and Hg (II) uptake process followed the pseudo-second order rate model with (R2) 0.963, 0.979, and 0.960 respectively. The equilibrium isotherm data were fitted with five theoretical models. Langmuir model provides the best fitting for the experimental results with (R2) 0.992, 0
... Show MoreIn this study, the induced splined shaft teeth contact and bending stresses have been investigated numerically using finite element method(Ansys package version 11.0) with changing the most effecting design parameter,(pressure angle, teeth number, fillet radius and normal module), for internal and external splined shaft. Experimental work has been achieved using two dimensional photoelastic techniques to get the contact and bending stresses; the used material is Bakelite sheet type “PSM-4”.
The results of numerical stress analysis indicate that, the increasing of the pressure angle and fillet radius decrease the bending stress and increase the contact stress for both internal and external spline shaft teeth while the increasing of