Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties encountered during the stimulation operation of the Ahdeb oil field, particularly for the development of the Mishrif reservoir. Since the new core flooding system is built to operate safely and straightforwardly. This study introduced the results of Matrix acidizing experiments, covering the most recent developments in linear core flooding. High-permeability flow pathways are created, and a longer and wider wormhole was generated at a high acid injection rate (6.67 cc/min). The acid efficiency curve yielded the lowest pore volume injected at the breakthrough of the PV_(bt-opt) is 2.73 and the v_(i-opt)=0.6 cm/min; thus, the optimum injection rate that results in an optimal possible wormhole and the least quantity of acid being used for this reservoir is 2.16 cc/min. This research evaluated the impact of matrix acidizing treatment on acoustic characteristics, which studies show are lacking or have never been investigated previously. Furthermore, in the assessment of geomechanical rock properties and elastic and petrophysical parameters before and after acid injection, one of the new concepts discovered during the lab experiment observation of the acoustic waveform before and after acid treatment for the tested rock sample is that the initial arrival time before acid treatment is 21.6 microseconds, with a delay of 31.2 microseconds attributed to the wormhole channel and mineral disintegration. CT-Scan applications in matrix acidizing were investigated in this research; additionally, a 3D view of plug samples was constructed to represent the wormhole extension via CT-processing software. A license of Stimpro Stimulation Software has been used to validate the experimental work to the field scale, making it the most comprehensive instrument for planning and monitoring matrix acid treatment and utilizing actual data to provide a far better knowledge of the well's reaction, with methods that represent the reality of what is happening in the reservoir before, during, and after matrix acid treatments, through the post-treatment skin factor which is the most often utilized statistic for analyzing stimulation treatments and relies on the geometry of the wormholed zone. The acid treatment evaluated for the well AD-12, primarily for the zone Mi4; matrix acid treatments can have their production behavior predicted or matched using the reservoir simulation and production analysis option, employing the numerical simulation license software Petrel (Schlumberger) and Rubis (KAPPA) to determine the efficacy of previous treatments and the economics associated with future treatments. The estimated oil gain volume and percentage for the Mi4 unit in Ad-12 using particularly skin value -3.97 computed from Stimpro software for real stimulation acid job, it is yield enhancement in production of oil gain volume 6154 barrels as well as 105% increase of gain percentage for three months after matrix acidizing.
The Buzurgan oil field is one of the most important oil fields border in southern Iraq.
Adjacent to the Fauqi and Abu Ghirab oil fields common with Iran. The 3D seismic data showed the structural and stratigraphic of the Buzurgan oil field, where the results showed that the structure is an anticline fold with two structural domes separated by a saddle, the northern culmination is shallower and less deformation. Thirty-one faults were detected and most of them at the south part of the field which are small while the north faults are larger.
The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, a
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and
... Show MoreThe Mishrif Formation is one of the most important geological formations in Iraq consisting of limestone, marl, and shale layers since it is one of the main oil producing reservoirs in the country, which contain a significant portion of Iraq's oil reserves. The formation has been extensively explored and developed by the Iraqi government and international oil companies, with many oil fields being developed within it. The accurate evaluation of the Mishrif formation is key to the successful exploitation of this field. However, its geological complexity poses significant challenges for oil production, requiring advanced techniques to accurately evaluate its petrophysical properties.
This study used advanced well-logging analysi
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreThe petrophysical analysis is very important to understand the factors controlling the reservoir quality and production wells. In the current study, the petrophysical evaluation was accomplished to hydrocarbon assessment based on well log data of four wells of Early Cretaceous carbonate reservoir Yamama Formation in Abu-Amood oil field in the southern part of Iraq. The available well logs such as sonic, density, neutron, gamma ray, SP, and resistivity logs for wells AAm-1, AAm-2, AAm-3, and AAm-5 were used to delineate the reservoir characteristics of the Yamama Formation. Lithologic and mineralogic studies were performed using porosity logs combination cross plots such as density vs. neutron cross plot and M-N mineralogy plot. Thes
... Show MoreThis research represents a 3D seismic structural study for 602.62 Km2 of Dujaila
Oil Field which is located 55 Km Northwest of Mysan province and 20 Km Southwest
of Ali-AlSharki region within unstable Mesopotamian basin.
Synthetic traces are prepared by using available data of two wells (Du-1, Du-2), in
order to define and pick the reflectors. Two reflectors are picked that represent the top
and bottom of Mishrif Formation, in addition to five units within this Formation are
picked, they named Units 1, 2, 3, 4, and 5.
Time maps for the top and bottom of Mishrif reflectors are drawn to get the
structural picture, these maps show general dip of layers toward NE, and thus, there
are two enclosure domes in the midd
Carbonate-clastic succession which includes the Shu'aiba, Nahr Umr and Mauddud formations are representing a part of the Barremian-Aptian Sequence (Wasi'a Group). The present study includes three boreholes (Ba-1, 4 and 8) within the Balad Oil Field. The study area is located in central Iraq. This field represents a subsurface anticline with a northwest to southeast direction axis within the Mesopotamian Zone. Eight types of microfacies were recognized in the succession of the Mauddud and Shu’aiba formations. These microfacies represent shallow open marine, restricted and semi-restricted, reef - back reef, deep open marine and basinal depositional environments. While Nahr Umr Formation includes two successions, the first is the upp
... Show MoreThe characterizations of reservoir require reliable knowledge of certain fundamental reservoir properties. Log measurements can define or at least infer these properties: resistivity, porosity, shale volume, lithology, and water, oil, or gas saturation and permeability. The current study represents evaluation of petrophysical properties in well LU-12 for Zubair Formation in Luhais Oil Field, southern Iraq. The petrophysical evaluation was based on geophysical well logs data to delineate the reservoir characteristics of Zubair Formation. The available geophysical well logs such as (sonic, density, neutron, gamma ray, SP, and resistivity logs) are digitized using the Didger software. The environmental corrections and petrophysical paramete
... Show MoreOilwell cementing operations are crucial for drilling and completion, preserving the well's productive life. However, weak and permeable formations pose a high risk of cement slurry loss, leading to failure. Lightweight cement, like foamed cement, is used to avoid these difficulties. This study is focused on creating a range of foamed slurry densities and examining the effect of gas concentration on their rheological properties. The foaming agent and foam stabilizer are tested, and the optimal concentration is determined to be 2% and 0.12%, respectively, by the weight of the cement.
Furthermore, the construction of samples of foam cement with different densities (0.8, 1.0, 1.2, 1.4, and 1.6) g/cc is performed to f
... Show More