The objective of this article is to delve into the intricate dynamics of marriage relationships, exploring the impact of emotions such as fear, love, financial considerations and likability. In our investigation, we adopt a perspective that acknowledges the nonlinear nature of interactions among individuals. Diverging from certain prior studies, we propose that the fear element within the context of marriage is not a singular, isolated factor but rather a manifestation resulting from the amalgamation of numerous social issues. This, in turn, contributes to the emergence of strained and unsuccessful relationships. Unlike conventional approaches, we extensively examine the conditions essential for the existence of all socially significant equilibrium points. A meticulous analysis is undertaken to elucidate the local and global dynamics of the model in the proximity of these equilibrium points. Furthermore, we explore the nuanced interplay between fear, love, money and likability, emphasizing the sensitivity of marriage relationships to changes in the rates of these factors. The outcomes of such variations yield a spectrum of intriguing results within the proposed model, adding depth to our understanding of the complexities inherent in the dynamics of marital relationships.
Weibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreThis paper performance for preparation and identification of six new complexes of a number of transition metals Cr (lII), Mn (I1), Fe (l), Co (II), Ni (I1), Cu (Il) with: N - (3,4,5-Trimethoxy phenyl-N - benzoyl Thiourea (TMPBT) as a bidentet ligand. The prepared complexes have been characterized, identified on the basis of elemental analysis (C.H.N), atomic absorption, molar conductivity, molar-ratio ,pH effect study, I. Rand UV spectra studies. The complexes have the structural formula ML2X3 for Cr (III), Fe (III), and ML2X2 for Mn (II), Ni (II), and MLX2 for Co (Il) , Cu (Il).
The electrocardiogram (ECG) is the recording of the electrical potential of the heart versus time. The analysis of ECG signals has been widely used in cardiac pathology to detect heart disease. The ECGs are non-stationary signals which are often contaminated by different types of noises from different sources. In this study, simulated noise models were proposed for the power-line interference (PLI), electromyogram (EMG) noise, base line wander (BW), white Gaussian noise (WGN) and composite noise. For suppressing noises and extracting the efficient morphology of an ECG signal, various processing techniques have been recently proposed. In this paper, wavelet transform (WT) is performed for noisy ECG signals. The graphical user interface (GUI)
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreThis study was conducted on a sample of commercial banks in Iraq, chosen according number of considerations for twenty banks, contained two public banks and eighteen private banks. &
... Show More