Quantum key distribution (QKD) provides unconditional security in theory. However, practical QKD systems face challenges in maximizing the secure key rate and extending transmission distances. In this paper, we introduce a comparative study of the BB84 protocol using coincidence detection with two different quantum channels: a free space and underwater quantum channels. A simulated seawater was used as an example for underwater quantum channel. Different single photon detection modules were used on Bob’s side to capture the coincidence counts. Results showed that increasing the mean photon number generally leads to a higher rate of coincidence detection and therefore higher possibility of increasing the secure key rate. The secure key rate can reach 0.0239 (bits/pulse) with a quantum bit error rate (QBER) of 3.2% for the free space channel and 1.5% for the simulated sea-water channel. The security parameters for each value of the mean photon number closely align with the corresponding theoretical predictions. However, some discrepancies were observed, primarily due to a mismatch in photon detection efficiency for SPDMs and system fluctuations. The theoretical calculations also predict that using coincidence detection, the key can be distributed over distances of up to 195 km.
Key generation for data cryptography is vital in wireless communications security. This key must be generated in a random way so that can not be regenerated by a third party other than the intended receiver. The random nature of the wireless channel is utilized to generate the encryption key. However, the randomness of wireless channels deteriorated over time due to channel aging which casing security threats, particularly for spatially correlated channels. In this paper, the effect of channel aging on the ciphering key generations is addressed. A proposed method to randomize the encryption key each coherence time is developed which decreases the correlation between keys generated at consecutive coherence times. When compared to the
... Show MoreTo investigate the role of IL-6 and IL-8 in the immune-regulatory mechanisms involved in the recurrent spontaneous abortion of the first trimester of pregnancy. Serum level of IL-6 and IL-8 were determined in 25 women of age (20-35) years who had a spontaneous abortion of unknown aetiology during the first trimester of pregnancy .They were compared with the corresponding levels of 20 pregnant and non-pregnant women as control groups .cytokine levels were measured by (ELISA) technique .The women with spontaneous abortion had highly significant (P < 0.01) increased serum level of IL-8 and highly significant (P < 0.01 ) decreased level of IL-6 compared to those with normal pregnant and non-pregnant women. The results of this study ma
... Show MoreBackground: The figure for the clinical application of computed tomography have been increased significantly in oral and maxillofacial field that supply the dentists with sufficient data enables them to play a main role in screening osteoporosis, therefore Hounsfield units of mandibular computed tomography view used as a main indicator to predict general skeleton osteoporosis and fracture risk factor. Material and Methods: Thirty subjects (7 males &23 females) with a mean age of (60.1) years underwent computed tomographic scanning for different diagnostic assessment in head and neck region. The mandibular bone quality of them were determined through Hounsfield units of CT scan images and were correlated with the bone mineral density v
... Show MoreMost available methods for unit hydrographs (SUH) derivation involve manual, subjective fitting of
a hydrograph through a few data points. The use of probability distributions for the derivation of synthetic
hydrographs had received much attention because of its similarity with unit hydrograph properties. In this
paper, the use of two flexible probability distributions is presented. For each distribution the unknown
parameters were derived in terms of the time to peak(tp), and the peak discharge(Qp). A simple Matlab
program is prepared for calculating these parameters and their validity was checked using comparison
with field data. Application to field data shows that the gamma and lognormal distributions had fit well.<
A nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.