Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable for photovoltaic application. On the other hand, Hall Effect indicated the high percentage of Cu increased carrier concentration and mobility. Current-voltage characteristics of p-SnS: Cu / n-Si demonstrate good photovoltaic effect as ratios of Cu increased and the contact parameters which obtained from these measurement show good dependence on doping concentration. In addition, 0.05 of Cu doping was an optimum level of concentration doping increase the efficiency of SnS: Cu /Si solar cell to 3.5%.
Abstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show MoreIn this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MoreThin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreAbstract. In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measur
... Show MoreThe n-type Au thin films of 500nm thickness was evaporated by thermal evaporation method on p-type silicon wafer of [111] direction to formed Au/Si heterojunction solar cell. The AC conductivity, C-V and I-V characteristics of fabricated c-Au/Si diffusion heterojunction-(HJ) solar cell, has been studied. The first methods demonstrated that the AC conductivity due to with diffusiontunneling mechanism, while the second show that, the heterojunction profile is abrupt, the heterojunction parameters have been played out, such as the depletion width, built-in voltage, and concentration. And finally the third one show that the c-Au/Si HJ has rectification properties, and the solar cell yielded an open circuit voltage of (Vic) 0.4V, short circuit c
... Show MoreThin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreCdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.
A thin film of (SnSe) and SnSe:Cu with various Cu ratio (0,3,5 and 7)% have been prepared by thermal evaporation technique with thickness 400±20 nm on glass substrate at (R.T). The effect of Cu dopants concentration on the structural, morphological, optical and electrical properties of (SnSe) Nano crystalline thin films was explored by using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), UV–Vis absorption spectroscopy and Hall Effect measurement respectively. X-ray diffraction analysis reveal the polycrystalline nature of the all films deposited with orthorhombic structure which possess a preferred orientation along the (111) plane. The crystalline sizes o
... Show More