Adsorption capacity of a waste biomass, date stones, for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m²/g and 475.88 mg/g, respectively. The effects of temperature, initial sorbate concentration, and contact time on the adsorption process were studied. Experimental equilibrium data for adsorption of Ph and PNPh on date stones were analyzed by the Langmuir, Freundlich and Sips isotherm models. The results show that the best fit was achieved with the Sips isotherm equation with maximum adsorption capacities of 147.09 and 179.62 mg/g for Ph and PNPh, respectively. The kinetic data wer
... Show MoreRG Majeed, AS Ahmed, Jornal of Al-Muthanna for Agricultural Sciences, 2023
Low grade crude palm oil (LGCPO) presents as an attractive option as feedstock for biodiesel production due to its low cost and non-competition with food resources. Typically, LGCPO contains high contents of free fatty acids (FFA), rendering it impossible in direct trans-esterification processes due to the saponification reaction. Esterification is the typical pre-treatment process to reduce the FFA content and to produce fatty acid methyl ester (FAME). The pre-treatment of LGCPO using two different acid catalysts, such as titanium oxysulphate sulphuric acid complex hydrate (TiOSH) and 5-sulfosalicylic acid dihydrate (5-SOCAH) was investigated for the first time in this study. The optimum conditions for the homogenous catalyst (5-SOCAH) wer
... Show MoreThis field experiment was conducted at Research Station B, Department of Horticulture and Landscape Engineering, College of Agricultural Engineering Sciences, University of Baghdad, Jadiriyah during the fall season of 2019-2020 to evaluate the effect of cultivation dates and soil fertilization source on the growth, yield and quality of broccoli. A split plot design within the RCBD design with three replicates was applied as the Max F1 hybrid broccoli seedlings were transferred to the field at two dates 25, Sep. 2019 and 15, Oct. 2019, which were symbolized as A and B, respectively, and occupied at the main plot. After two weeks of cultivation, the soil fertilizers were applied three times during the season in 20 days between each applicati
... Show MoreYeasts are distributed in all environments and have been reported as potential biocontrol agents against various phytopathogenic fungi. To investigate their enzymatic and biological activities, 32 yeasts were isolated from 15 date vinegar samples. Evaluation of the antagonistic activities of isolated yeasts against the plant pathogens Fusarium oxysporium, Sclerotinia sclerotiorum, and Macrophomina phaseolina indicated that there are two yeasts had the highest inhibitory effect against plant pathogens, these yeasts identified as Kluyveromyces marxianus and Torulaspora delbrueckii using traditional and molecular methods. These yeast isolates were tested for fungal cell wall degrading enzymes (in vitro), and results indicated that the
... Show MoreIn this study, a factorial experiment was conducted using a Randomized Complete Block Design (RCBD) with three replicates to investigate the effects of silicon at four concentrations: 0, 2, 4, and 6 ml/L, designated as S0, S1, S2, and S3, respectively and a calcium-boron combination at three concentrations: 0, (0.5 g/L Ca-EDTA, + 10 mg/L B), and (1 g/L Ca-EDTA, + 20 mg/L B), designated as C0, C1, and C2, respectively. on the activity of antioxidant enzymes and some qualitative traits of fruits. The results indicated that the studied traits were significantly influenced by the factors. Silicon application notably increased enzyme activity, treatment S3 showed the highest activity levels for peroxidase (POD) and superoxide dismutase (SOD) rea
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MorePalm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main
... Show More