Preferred Language
Articles
/
exerLo8BVTCNdQwCB11P
Enhancing Vegetative Growth by Adding Phosphorus, Silicon, and Citric Acid to Pepper Plants Cultivated in Plastic Greenhouses
...Show More Authors
Abstract<p>The research was conducted in a plastic greenhouse at the College of Agricultural Engineering Sciences, University of Baghdad - Jadiriyah Campus, during the 2021-2022 season, to study the effect of phosphorus, silicon, and citric acid on pepper plants using a factorial experiment design with three replicates. The first factor had three levels of phosphorus (0, 160, and 320 kg P<sub>2</sub>O<sub>5</sub> per hectare), the second factor had three levels of potassium silicate (0, 75, and 100 kg per hectare), and the third factor had four levels of citric acid (0, 2, 4, and 6 kg per hectare). The statistical analysis showed that treatment P2S2C1 resulted in an increase in the main stem diameter (25.10 mm), treatment P3S3C1 led to an increase in the main branch diameter (16.10 mm), and treatment P3S3C2 showed an increase in the diameter of secondary and tertiary branches (13.50 mm and 8.90 mm, respectively). Treatment P2S3C1 resulted in an increased number of leaves and the dry weight of the total vegetative mass (1286.7 leaves and 415.0 g plant<sup>-1</sup> respectively). Treatment P3S2C4 led to an increase in the dry weight of roots (25.47 g plant<sup>-1</sup>), treatment P2S3C4 showed an increased number of fruits (48.34 fruits plant<sup>-1</sup>), and treatment P3S3C4 resulted in an increased total yield (4.87 tons greenhouse<sup>-1</sup>).</p>
Scopus Crossref
View Publication
Publication Date
Thu Apr 06 2023
Journal Name
Materials Science Forum
Study of the Effect of Ce &lt;sup&gt;3+&lt;/sup&gt; on the Gas Sensitivity and Magnetic Properties of Cu&lt;sub&gt;x&lt;/sub&gt;Ce&lt;sub&gt;0.3-X&lt;/sub&gt;Ni&lt;sub&gt;0.7&lt;/sub&gt;Fe&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt; Ferrite Nanoparticles
...Show More Authors

This study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees21gr
AIP Conference Proceedings 2437, 020060 (2022); https://doi.org/10.1063/5.0092690 2437, 020060© 2022 Author(s).Theoretical calculation of the electroniccurrent at N3 contact with TiO2 solar celldevices (3) (PDF) Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].
...Show More Authors

Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].

View Publication
Crossref (2)
Crossref