Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes into account the majority of the challenges faced by existing methods of age estimate. Making use of the data set that serves as the foundation for the face estimation system in this region (IMDB-WIKI). By performing preparatory processing activities to setup and train the data in order to collect cases, and by using the CNN deep learning method, which yielded results with an accuracy of 0.960 percent, we were able to reach our objective.
Objective: To assess the clinical learning environment and clinical training for students' in maternal and child
health nursing.
Methodology: A descriptive study was conducted on non probability sample (purposive) of (175) students' in
Nursing College/ University of Baghdad for the period of June 19th to July 18th 2013. A questionnaire was used as a
tool of data collection to fulfill with objective of the study and consisted of three parts, including demographic,
clinical learning environment and clinical training for students' in maternal and child health nursing. Descriptive
statistical analyses were used to analyze the data.
Results: The results of the study revealed that the 65.1% of student at age which ranged b
Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Background: The pandemic crisis prompted the world to adopt unexpected approaches to continue life as normally as possible. The education sector, including professors, students, and the overall teaching system, has been particularly affected. Objective: This study seeks to evaluate the benefits, challenges, and strategies related to COVID-19 from the perspectives of college students, particularly those in higher education in Iraq. Method: The online survey questionnaire was distributed via Google Forms and specifically aimed at undergraduate dental students. Results: A total of 348 students participated in the survey. There was a significant correlation (P > 0.01) between student satisfaction with hybrid learning and their experi
... Show MoreFor over a decade, educational technology has been used sparingly in our schools and universities. Online training courses have been used since 2003 to fill the gaps in our learning system and to add extra program besides classroom learning. This paper aims to investigate the Iraqi EFL instructors’ participating in online training courses and its influence on the process of teaching and learning.
The sample of present study consists of 30 instructors from University of Baghdad. The questionnaire of sixteen items was constructed. After ensuring validity and reliability of questionnaire, it was applied on March 2013 and the result shows that most of instructors improve their teaching methods b
... Show MoreVolleyball is one of the sports that require physical and skill abilities thus many teaching models appeared to teach these abilities like group investigation model. The research aimed at identifying the effect of group investigation model on learning underarm and overhead passing in volleyball. The researchers hypothesized statistical differences between pre and posttests in learning underarm and overhead passing in volleyball as well as differences in posttests of controlling and experimental groups in learning underarm and overhead passing in volleyball. The researcher used the experimental method on (30) second year female students of physical education and sport sciences college/ university of Baghdad. Group investigation model was app
... Show MoreThe objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreBackground: The incisive canal is an anatomical structure with an important location in the anterior maxilla, analyzing this canal and its relation to the bone anterior to the canal is necessary during dental implant. Aim of this study is evaluated effect of gender, age and tooth loss in area of maxillary central incisors teeth on the dimensions of incisive canal and buccal bone anterior to the canal using spiral computed tomography. Materials and Methods: Sample consists of prospective study for 156 subjects for both gender, they divided into two groups, 120 dentate group (60 male and 60 female) with age ranging from (20-70) and 36 edentate group (with missing maxillary central incisors) (18 male and 18 female) with age ranging from (50-70
... Show More