Preferred Language
Articles
/
exeVPo8BVTCNdQwCNGWb
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes into account the majority of the challenges faced by existing methods of age estimate. Making use of the data set that serves as the foundation for the face estimation system in this region (IMDB-WIKI). By performing preparatory processing activities to setup and train the data in order to collect cases, and by using the CNN deep learning method, which yielded results with an accuracy of 0.960 percent, we were able to reach our objective.

Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Proceedings Of The 31th Minisymposium
Towards the Requirement-Driven Generation and Evaluation of Hyperledger Fabric Network Designs
...Show More Authors

View Publication
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (13)
Scopus Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of Educational And Psychological Researches
The awareness degree of teacher students in Arabic language department and their supervisors at Al-aqsa University for their future role in knowledge age
...Show More Authors

The study aimed to identify the awareness degree of teacher students in the department of Arabic language and their supervisors at Al-aqsa University for their future roles in the age of knowledge. To achieve this objective, descriptive- analytical approach was used. The instruments of this study were two questionnaires: first one consist of (20) item for teacher students, and the second consist of (27) item for educational supervisors which covered three roles: professional, technological, and humanitarian. The sample was (120) student selected randomly, and (39) supervisors of Arabic language. The result revealed that the mean of degree awareness of teacher students and their supervisors of future role are (3.857), (3.472) respectively

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Asian Journal Of Applied Sciences
Comparison between Expert Systems, Machine Learning, and Big Data: An Overview
...Show More Authors

Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.

View Publication
Crossref (2)
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Effect of Orgnizational Learning in gnizational Effectifness: An Applied Study
...Show More Authors

The purpose of this study is testing the effect of orgnizational learning in orgnizational Effectivness an applied study in Al-hiqma Jordinan Medecine Company . study sosiety 88 manegers sleect 80 of them .study used SPSS to test the hypothesis.study reachs to significant conculctions

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
A Comparative Study for Supervised Learning Algorithms to Analyze Sentiment Tweets
...Show More Authors

      Twitter popularity has increasingly grown in the last few years, influencing life’s social, political, and business aspects. People would leave their tweets on social media about an event, and simultaneously inquire to see other people's experiences and whether they had a positive/negative opinion about that event. Sentiment Analysis can be used to obtain this categorization. Product reviews, events, and other topics from all users that comprise unstructured text comments are gathered and categorized as good, harmful, or neutral using sentiment analysis. Such issues are called polarity classifications. This study aims to use Twitter data about OK cuisine reviews obtained from the Amazon website and compare the effectiveness

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Energy Consumption Prediction of Smart Buildings by Using Machine Learning Techniques
...Show More Authors

     This paper presents an IoT smart building platform with fog and cloud computing capable of performing near real-time predictive analytics in fog nodes. The researchers explained thoroughly the internet of things in smart buildings, the big data analytics, and the fog and cloud computing technologies. They then presented the smart platform, its requirements, and its components. The datasets on which the analytics will be run will be displayed. The linear regression and the support vector regression data mining techniques are presented. Those two machine learning models are implemented with the appropriate techniques, starting by cleaning and preparing the data visualization and uncovering hidden information about the behavior of

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
Cervical Pain Related to Position of the Neck during E-Learning
...Show More Authors

Background: During the pandemic, Corona virus forced many people, especially students, to spend more time than before on the computer and smartphone to study and communicate. The poor posture of the body may have worse effect on its body parts , most of which is the cervical spine (forward head posture). Objective: To assess the incidence of neck pain and the associated factors among undergraduate medical students related to position during E learning Subjects and Methods: Cross-sectional study was conducted among medical students in three Iraqi universities during 2021. The sample size was 152. Online questionnaire by Google forms sampling method were used to collect the data which was analysed using SPSS 25. Results: The perce

... Show More
Preview PDF
Crossref
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
Technology Usage in English Language Teaching and Learning: Reality and Dream
...Show More Authors

The aim of the study is to diagnose the real level of technology usage in teaching and learning EFL at university from teachers and students’ viewpoints, and see if it is possible to achieve something of the researchers’ dream - accessing top universities. Two questionnaires have been used to measure the range of technology usage in Colleges of Education for Women, Baghdad and Iraqi Universities, and College of Basic Education. The results have shown that the reality of using technology is still away from the dream. The results have been ascribed to two reasons: The first is the little knowledge of using technology in teaching, and the second is that technology is not included in the curriculum.

View Publication Preview PDF