Background: Breast cancer is the most common cancer in Iraq and the United Kingdom. While the disease is frequently diagnosed among middleaged Iraqi women at advanced stages accounting for the second cause of cancer-related deaths, breast cancer often affects elderly British women yielding the highest survival of all registered malignancies in the UK. Objective: To compare the clinical and pathological profiles of breast cancer among Iraqi and British women; correlating age at diagnosis with the tumor characteristics, receptor-defined biomarkers and phenotype patterns. Methods: This comparative retrospective study included the clinical and pathological characteristics of (1,940) consecutive female patients who were diagnosed with invasive b
... Show MoreBackground: Soft Laser has been advantageous in medical applications and is widely used in clinical practice. It is applied because it doesn’t cause the significant thermal effects or tissue hurt when irradiated. The blood response to low power laser radiation provides information about processes of laser radiation interaction with live creatures. Objective: The aim of the current work was to evaluate the laser-induced changes of in vitro erythrocyte sedimentation rate (ESR), mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC) in patients with breast cancer by irradiating a human blood sample using a green laser and comparing its effects before and after irradiation with the same power density (100mW/c
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show More