This paper proposes a compact, plasmonic-based 4 × 4 nonblocking switch for optical networks. This device uses six 2 × 2 plasmonic Mach-Zehnder switch (MZS), whose arm waveguide is supported by a JRD1 polymer layer as a high electro-optic coefficient material. The 4 × 4 switch is designed in COMSOL environment for 1550 nm wavelength operation. The performance of the proposed switch outperforms those of conventional (nonplasmonic) counterparts. The designed switch yields a compact structure ( 500 × 70 µ m 2 ) having V π L = 12 V · µ m , 1.5 THz optical bandwidth, 7.7 dB insertion loss, and −26.5 dB crosstalk. The capability of the switch to route 8 × 40 Gbps WDM signal is demonstrated successfully.
The cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98
... Show MoreIn this paper, we investigate and study quantum theoretical of quark-gluon interaction modeling in QGP matter formatted. In theoretical modeling, we can use a flavor number, strength coupling, critical energy Tc = 190 MeV, system energy (400-650)MeV, fugacity of quark and gluon, and photon energy in range of 1-10 GeV parameter to calculation and investigation spectrum of photon rate. We calculation and study the photon rate produced through bremsstrahlung processes from the stable QGP matter. The photon rate production from cg → dgy systems at bremsstrahlung processes are found to be increased with increased fugacity, decreased strength coupling, decreased the photons energy and temperature of system. The photons rate in cg → dgy is inc
... Show MoreAbstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MoreCreep testing is an important part of the characterization of composite materials. It is crucial to determine long-term deflection levels and time-to-failure for these advanced materials. The work is carried out to investigate creep behavior on isotropic composite columns. Isotropy property was obtained by making a new type of composite made from a paste of particles of carbon fibers mixed with epoxy resin and E-glass particles mixed with epoxy resin. This type of manufacturing process can be called the compression mold composite or the squeeze mold composite. Experimental work was carried out with changing the fiber concentration (30, 40 and 50% mass fraction), cross section shape, and type of composite. The creep results showed that th
... Show MoreAlkaloids are a group of naturally occurring chemical compounds that contain mostly basic nitrogen atoms . They are a large family of compounds synthesized by plants in addition to the bacteria, fungi, and animals, they often have pharmacological effects. The aim of this study is to isolate and identified alkaloids in a newly studied, wild Iraqi plant named
... Show MoreThe main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9
... Show MoreIn recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show MoreThe two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables
Reducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi
Response of cross-ply plates subjected to transient load is obtained using five variables refined plate theory, and four variables plate theory. Equations of motion are derived through the principleof virtual work. Navier series used for simply supported laminated plates. The results of this work are presented for different parameters, such as the ply number, thickness, and modulus ratio with mechanical load (sinusoidal and step pulses), which are compared with those obtained using high-order shear plate theory. Five variables of refined plate theory give results that are considerably different from the four variables of refined plate theory and higher-order theory. The obtained results from the four variables theory have the same behavior
... Show More