Polymers, being one of the most important materials in dentistry, offer great physical and mechanical qualities, as well as good biocompatibility. Aim of this study was done to evaluate the Polyetherketoneketone and Polyetherketoneketone polymer composite material used as dental implant through tensile strength, Fourier Transform Infrared analysis FTIR, and wettability). Polyetherketoneketone composites (Polyetherketoneketone and Strontium-containing hydroxyapatite) with selected weight percentage ratios of (0, 10%, 20%, 30%), were fabricated using a compression molding technique”, The study involved Samples preparation (sheets) shaped and form into the desired shape according to standard for tests which included tensile strength, Fourier Transform Infrared analysis FTIR, and wettability. The results obtained from the experiments showed slight increase in tensile strength of the polymer composite consisting from polyetherketoneketone and strontium hydroxaptatite nanofiller compared with pure Polyetherketoneketone, with increase the in concentration of Polyetherketoneketone composite (concentration 10%, 20%, 30%), improvement in the wettability value, with no effect in the chemical structure of Polyetherketoneketone composite comparing with the PEKK composite.
Encasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show MoreDue to the importance of solutions of partial differential equations, linear, nonlinear, homogeneous, and non-homogeneous, in important life applications, including engineering applications, physics and astronomy, medical sciences, and life technology, and their importance in solutions to heat transfer equations, wave, Laplace equation, telegraph, etc. In this paper, a new double integral transform has been proposed.
In this work, we have introduced a new double transform ( Double Complex EE Transform ). In addition, we presented the convolution theorem and proved the properties of the proposed transform, which has an effective and useful role in dealing with the solution of two-dimensional partial differential equations. Moreover
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreThis research studied the effects of modified BaTiO3 (BT) nanoparticles with coupling agent γ-APS (0.5wt. %) on the tensile and thermal conductivity of epoxy nanocomposites with respect to content (0.25, 0.5, 0.75, 1, 3 and 5wt. %). Multiwall carbon nanotubes (MWCNTs) at different concentration (0.2, 0.4, 0.8 and 1 wt. %) were added to the BaTiO3/epoxy nanocomposites. The influence of MWCNTs on the tensile properties and thermal conductivity was investigated. The tensile strength and Young’s modulus of BaTiO3/epoxy nanocomposites film were increased at up to 3 wt. % of added BT, but adding BT at more than 3 wt.% decreased the strength of epoxy. The tensile strength was increased with incre
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreCdS and CdTe thin films were thermally deposited onto glass substrate. The CdCl2 layer was deposited onto CdS surface. These followed by annealing for different duration times to modify the surface and interface of the junction. The diffraction patterns showed that the intensity of the peaks increased with the CdCl2/annealed treatment, and the grain sizes are increased after CdCl2/annealed treatment
Ferrite with general formula Ni1-x Cox Fe2O4(where x=0.0.1,0.3,0.5,0.7, and 0.9), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns. The lattice parameter results were (8.256-8.299 °A). Generally, x -ray density increased with the addition of Cobalt and showed value between (5.452-5.538gm/cm3). Atomic Force Microscopy (AFM) showed that the average grain size and surface roughness was decreasing with the increasing cobalt concentration. Scanning Electron Microscopy images show that grains had an irregular distribution and irregular shape. The A.C conductivity was found to increase with the frequency and the addition of Cobal
... Show MoreIn this research we studied the structural and optical properties of (CdTe) thin films which have been prepared by thermal evaporation deposition method on the glass substrate at R.T with thickness (450  25) nm., as a function of doping ratio with copper element in (1,3,5) % rate .The structure measurement by X-ray diffraction (XRD) analyses shows that the single phase of (CdTe) with polycrystalline structure with a preferred orientation [111]. The optical measurement shows that the (CdTe) films have a direct energy gap, and they decrease with the increase of doping ratio reaching to 5% . The optical constants are investigated and calculated, such as absorpti
... Show MoreThe electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show More