Polymers, being one of the most important materials in dentistry, offer great physical and mechanical qualities, as well as good biocompatibility. Aim of this study was done to evaluate the Polyetherketoneketone and Polyetherketoneketone polymer composite material used as dental implant through tensile strength, Fourier Transform Infrared analysis FTIR, and wettability). Polyetherketoneketone composites (Polyetherketoneketone and Strontium-containing hydroxyapatite) with selected weight percentage ratios of (0, 10%, 20%, 30%), were fabricated using a compression molding technique”, The study involved Samples preparation (sheets) shaped and form into the desired shape according to standard for tests which included tensile strength, Fourier Transform Infrared analysis FTIR, and wettability. The results obtained from the experiments showed slight increase in tensile strength of the polymer composite consisting from polyetherketoneketone and strontium hydroxaptatite nanofiller compared with pure Polyetherketoneketone, with increase the in concentration of Polyetherketoneketone composite (concentration 10%, 20%, 30%), improvement in the wettability value, with no effect in the chemical structure of Polyetherketoneketone composite comparing with the PEKK composite.
We aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure
In this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
Fine aggregate (Sand) is a necessary material used in concrete construction purposes, it’s naturally available and it’s widely used around the world for different parts of construction in any building mainly for filling the voids between gravel. Sand gradation is important for different composite materials, and it gives good cohesion when compared with coarse sand that provides strength for the building. Therefore, sand is necessary to be tested before it is used and mixed with other building materials in construction and the specimen must be selected carefully to represent the real material in the field. The specimen weight must be larger than the required weight for test. When t
Sampling is the selection of a representative portion of a material, and it’s as important as testing. The minimum weight of gravel field or lab sample depends on the nominal maximum particle size. The weight of the sample will always be greater than that portion required for testing. The approximate precision desired for the testing will control the weight of the gravel sample. In this study, gravel sample has been simulated by using multilinear approximated function for Fuller’s curve on the logarithmic scale. Gravel particles are divided into classes according to their medium diameter and each class was simulated separately. A stochastic analysis, by using 100 realizations in s
In line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreIn line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreManual probing and periodontal charting are the gold standard for periodontal diagnosis that have been used in practice over a century. These methods are affordable and reliable but they are associated with some drawbacks that cannot be avoided. Among these issues is their reliance on operator’s skills, time-consuming and tedious procedure, lack sensitivity especially in cases of early bone loss, and causing discomfort to the patient. Availability of a wide range of biomarkers in the oral biofluids, dental biofilm, and tissues that potentially reflect the periodontal health and disease accurately encouraged their use as predictive/diagnostic/monitoring tools. Analysing biomarkers during care-giving to the patient using chairside kits i
... Show Moreby in situ polymerization of aniline monomer, conducting polyaniline (PANI) nanocomposites containing various concentrations of carboxylic acid functionalized multi-walled carbon nanotubes (f-MWCNT) were synthesized. The morphological and electrical properties of pure PANI and PANI /MWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) respectively. FTIR spectra shows that the carboxylic acid groups formed at the both ends of the sidewalls of the MWCNTs. The aniline monomers were polymerized on the surface of MWCNTs, depending on the -* electron interaction between aniline monomers and MWCNTs and hydrogen bonding into interaction between t
... Show More