A bolted–welded hybrid demountable shear connector for use in deconstructable steel–concrete composite buildings and bridges was proposed. The hybrid connector consisted of a partially threaded stud, which was welded on the flange of a steel section, and a machined steel tube with compatible geometry, which was bolted on the stud. Four standard pushout tests according to Eurocode 4 were carried out to assess the shear performance of the hybrid connector. The experimental results show that the initial stiffness, shear resistance, and slip capacity of the proposed connector were higher than those of traditional welded studs. The hybrid connector was a ductile connector, according to Eurocode 4, with slip capacity higher than 6 mm. A nonlinear finite-element model was calibrated against the pushout tests and found capable of reproducing the experimental behavior with good agreement. The verified finite-element model was then used to conduct a series of parametric studies in order to assess the effect of infilled grout, concrete slab strength, stud diameter, stud tensile strength, tube thickness, and tube tensile strength on the shear resistance and stiffness of the hybrid connector. Based on the experimental and numerical results, a design equation is proposed for the prediction of the shear resistance of the novel connector.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImproving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.
This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressiv
... Show MoreThis paper deals with one of important topics that serve the art movement music, which is looking at the stairs of Arab music in the process of reaching to the directory musical on the subject of so-called (Photo by stairs music) and that by comparing the method used previously and the proposed rules reached by the researcher and received the patent invention, the method is easier for the musician and the author in a directory of peace Arab music when used on grades and half grades voice, and to achieve its objectives researcher dealt with the problem that is determined by the multitude of stairs leading Arab and the difficulty of keeping its catalog of music, and for being an anchor and pillar of the music was taken up and put her impor
... Show MoreAssociation rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
The paired sample t-test for testing the difference between two means in paired data is not robust against the violation of the normality assumption. In this paper, some alternative robust tests have been suggested by using the bootstrap method in addition to combining the bootstrap method with the W.M test. Monte Carlo simulation experiments were employed to study the performance of the test statistics of each of these three tests depending on type one error rates and the power rates of the test statistics. The three tests have been applied on different sample sizes generated from three distributions represented by Bivariate normal distribution, Bivariate contaminated normal distribution, and the Bivariate Exponential distribution.
<span lang="EN-GB">This paper highlights the barriers that have led to a delay in the implementation of E-Health services in Iraq. A new framework is proposed to improve the E-Health sector using a SECI model which describes how explicit and tacit knowledge is generated, transferred, and recreated in organizations through main stages (socialization, externalization, combination and internalization). Class association rules (CARs) is integrated to mine the SECI model by extracting related rules which correspond to the medical advice. The proposed framework (SECICAR) can be done through a web portal to assemble healthcare professionals, patients in one environment. SECICAR will be applied to the hypertension community to show th
... Show MoreCarrying strength is one of the important physical capabilities in the field of competitive sports, which affects the success of the sports training process and helps players to continue to perform skillfully, physically and tactically for as long as possible, and the capacity for endurance varies depending on the type of sports activities, it may sometimes be very short. And with a high level of intensity, such as gymnastics and wrestling movements, and it may be long, and with a medium level of intensity, as in basketball, football and other games. The research community represents a sample of Baghdad players for teams (football, basketball, handball, volleyball, wrestling, weightlifting) and for the sports season (2017-2018 AD) for ages
... Show Moreلقد كان حرص المؤلف على إصدار هذا الكتاب نابعا ً من قناعة تامة بأن مجال التقويم والقياس بحاجة إلى كتاب علمي حديث يتناول عرض أدوات الاختبار والقياس والمتمثلة بالصدق والثبات ويتسم بالوضوح في التعبير عن المفاهيم والمصطلحات والأنواع لكل منها ليكون وسيلة مبسطة بأيدي الأساتذة والباحثين وطلبتي الدراسات العليا الماجستير والدكتوراه لإستخراج صدق وثبات الاختبارات والمقاييس بطرق إحصائية متقدمة من خلال إستخدام البرنا
... Show More