A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization techniques than the conventional tabular data format. To achieve the main objective of this research, two study areas have been chosen: the old constructionbridge (Al-Qadisiyah bridge) and the newly constructed bridge (Barboty bridge). Both of them are in Al-Muthanna city \ Iraq. The data collection process was achieved in two stages: the first stage is providing a georeferenced satellite image for each study area for the purpose of producing a two-dimensional map. The second stage includes the field surveying process by total station and level instruments. GIS have been used to create a comprehensive database (Geodatabase) for both study areas. Geostatistical analysis was carried out in which the settlement areas of both study areas were defined by producing a colour image. The statistical tables for these analyses showed that the highest decline in the elevation reached at Al-Qadisiyah bridge to 19 mm in the middle of the bridge which is coloured as a red areas. On the other hand, it was found that the highest decline in the elevation of the Barboty bridge is 16 mm in the last part of steel space which is also coloured as a red areas.
The possible effects of COVID-19 vaccines on reproductive health and male fertility in particular have been discussed intensely by the scientific community and the public since their introduction during the pandemic. On news outlets and social media platforms, many claims have been raised regarding the deleterious effects of COVID-19 vaccines on sperm quality without scientific evidence. In response to this emerging conflict, we designed this study to evaluate and assess the effect of the Pfizer-BioNTech mRNA COVID-19 vaccine on male fertility represented by the semen analysis parameters.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Let R be a commutative ring with identity, and let M be a unitary R-module. We introduce a concept of almost bounded submodules as follows: A submodule N of an R-module M is called an almost bounded submodule if there exists xÃŽM, xÃN such that annR(N)=annR(x).
In this paper, some properties of almost bounded submodules are given. Also, various basic results about almost bounded submodules are considered.
Moreover, some relations between almost bounded submodules and other types of modules are considered.
Every finite dimensional normed algebra is isomorphic to the finite direct product of or , it is also proved these algebras are ultrasemiprime algebras. In this paper, the ultrasemiprime proof of the finite direct product of and is generalized to the finite direct product of any ultrasemiprime algebras.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.
Our aim in this work is to investigate prime submodules and prove some properties of them. We study the relations between prime submodules of a given module and the extension of prime submodules. The relations between prime submodules of two given modules and the prime submodules in the direct product of their quotient module are studied and investigated.