In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in R program by using some existing packages.
In this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical p
... Show MoreBackground: Loss of tooth structure may be due to tooth to tooth contact and presence of abrasive components in the work environment. The aim of study was planned to evaluate the occurrence of dental attrition among Cement factory workers. Material and Method: The Sample included all workers chronically exposed to cement dust in the EL-Kubaisa cement factory (95 workers). A comparative group of workers (97) were non-exposed to cement dust was selected. All workers were males in gender with age range (25-55) years. The assessment of tooth wear was based on the criteria of smith and knight, 1984. Results: The maximum tooth wear score for exposed workers was 84.2% while non exposed workers was 38.1%,with statistical differences between two g
... Show MoreIntegrated reservoir rock typing in carbonate reservoirs is a significant step in reservoir modelling. The key purpose of this study is the identification of integrated rock types in the Sarvak Formation of an Iranian oilfield. In this study, electrofacies (EFAC) analysis of the Sarvak reservoir was done in detail to determine the reservoir quality and rock types of the Sarvak Formation in the studied field. The core data and conventional petrophysical logs were used for rock typing. Some petrophysical logs such as porosity, sonic, neutron, density, and Photo electric factor were applied as input data for electrofacies analysis. Multi-Resolution Graph-Based Clustering was used among six approaches, resulting in four electrofacies af
... Show MoreThe rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environme
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show More