Preferred Language
Articles
/
ehd2RI8BVTCNdQwCEGgi
Regression shrinkage and selection variables via an adaptive elastic net model
...Show More Authors
Abstract<p>In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in R program by using some existing packages.</p>
Scopus Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials &amp; Continua
A New Hybrid Feature Selection Method Using T-test and Fitness Function
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2006
Journal Name
Journal Of Physical Education
An analytical study in some kinematics variables in (200) meter breaststroke swimming for women in championship in Spanish 2003
...Show More Authors

The aim of this study was to making an analytical study in some kinematics variables in (200) meter breaststroke swimming to first ranking in championship 2003 – Spanish. The swimming in our country still suffering from several obstruction with retarded it’s development for the better since the investigators observe the insufficiency of swimming in our country to any analytical study for the international champions, this led to no specific and scientific discovering to these advanced levels as the estimation of the value of performance from the Iraqi coaches dependent on personality observation dependent on their opinion without referring to the specific and scientific diction. The investigators dependent on several kinematics variables

... Show More
Preview PDF
Publication Date
Sun Dec 30 2012
Journal Name
Journal Of Kufa For Mathematics And Computer
On Jeffery Prior Distribution in Modified Double Stage Shrinkage-Bayesian Estimator for Exponential Mean
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage Estimator For the Variance of Normal Distribution With Unknown Mean
...Show More Authors

     This paper is concerned with preliminary test double stage shrinkage estimators to estimate the variance (s2) of normal distribution when a prior estimate  of the actual value (s2) is a available when the mean is unknown  , using specifying shrinkage weight factors y(×) in addition to pre-test region (R).

      Expressions for the Bias, Mean squared error [MSE (×)], Relative Efficiency [R.EFF (×)], Expected sample size [E(n/s2)] and percentage of overall sample saved of proposed estimator were derived. Numerical results (using MathCAD program) and conclusions are drawn about selection of different constants including in the me

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 25 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Some Estimator Methods of Linear Regression Model With Auto-Correlated Errors With Application Data for the Wheat in Iraq
...Show More Authors

This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2015
Journal Name
2015 Ieee Congress On Evolutionary Computation (cec)
Differential evolution with adaptive repository of strategies and parameter control schemes
...Show More Authors

A new Differential Evolution (ARDE) algorithm is introduced that automatically adapt a repository of DE strategies and parameters adaptation schemes of the mutation factor and the crossover rate to avoid the problems of stagnation and make DE responds to a wide range of function characteristics at different stages of the evolution. ARDE algorithm makes use of JADE strategy and the MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive procedure called adaptive repository (AR) has been developed to select the appropriate combinations of the JADE strategies and the parameter control schemes of the MDE_pBX to generate the next population based on their fitness values. Experimental results have been presented to confirm the reli

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Piezoelectric Flexible Beams
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 18 2020
Journal Name
Hal Open Science
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms
...Show More Authors

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri

... Show More
View Publication
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
...Show More Authors

Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .

                In this paper  a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering  and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet

... Show More
View Publication Preview PDF