In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in R program by using some existing packages.
In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample
... Show MoreThe bit record is a part from the daily drilling report which is contain information about the type and the number of the bit that is used to drill the well, also contain data about the used weight on bit WOB ,revolution per minute RPM , rate of penetration ROP, pump pressure ,footage drilled and bit dull grade. Generally we can say that the bit record is a rich brief about the bit life in the hole. The main purpose of this research is to select the suitable bit to drill the next oil wells because the right bit selection avoid us more than one problems, on the other hand, the wrong bit selection cause more than one problem. Many methods are related to bit selection, this research is familiar with four of thos
... Show MoreRegression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh
... Show MoreIn general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o
... Show MoreProxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreThis study aims to measure and analyze the direct and indirect effects of the financial variables, namely (public spending, public revenues, internal debt, and external debt), on the non-oil productive sectors with and without bank credit as an intermediate variable, using quarterly data for the period (2004Q1–2021Q4), converted using Eviews 12. To measure the objective of the study, the path analysis method was used using IBM SPSS-AMOS. The study concluded that the direct and indirect effects of financial variables have a weak role in directing bank credit towards the productive sectors in Iraq, which amounted to (0.18), as a result of market risks or unstable expectations in the economy. In addition to the weak credit ratings of borr
... Show MoreOne of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show MoreThe principle of citizenship has international dimensions that affect the application of the principle, such as the structure of the international system, and the control of the concepts of globalization, international organizations which played an important role in the consolidation of this principle.
The problem of the study revolves around the effects of international variables on the principle of citizenship in Kuwait during the period 1991-2018.
The study used several indicators, such as: the rule of law, achieving the principle of separation of powers, the right to form parties, the application of the law of nationality, and racial discrimination, women's rights, and freedom of expression.