Preferred Language
Articles
/
ehcjqJEBVTCNdQwCTpcL
Comparison effect of violet and red laser irradiation on the structural properties of mawsonite Cu6Fe2SnS8 [CFTS] thin films deposited via (SCSPT)
...Show More Authors

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A study of Some Electrical Properties of Te:S Thin Films Deposited at Angle Ó¨=70o
...Show More Authors

       In this research a study of some electrical properties Of (Te) thin films with(S) impurities of(1.2%) were deposited at( Ó¨=700)by thermal evaporation technique .The  thicknesses of deposited films were (1050 , 1225 , 1400 , 1575  nm) on a glass substrates of different dimensions . From X-ray diffraction spectrum, the films are polycrystalline .A study of (I-V) characteristic for thin films, the measurements of electrical conductivity (σ)and electrical resistance(R )vs. temperature( T) are done. Further a measurement of thermoelectric power, see beck coefficient and activation energies ( Ea, Es) were computed

View Publication Preview PDF
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Thickness Influence on Structural and Optical Properties of ZnO Thin Films Prepared by Thermal Evaporation
...Show More Authors

  A thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Thickness Influence on Structural and Optical Properties of ZnO Thin Films Prepared by Thermal Evaporation
...Show More Authors

Zinc Oxide transparent thin films (ZnO) with different thickness from (220 to 420)nm
±15nm were prepared by thermal evaporation technique onto glass substrates at 200 with
the deposition rate of (10 2) nm sec
-1
, X-ray diffraction patterns confirm the proper phase
formation of the material. The investigation of (XRD) indicates that the (ZnO) film is
polycrystalline type of Hexagonal and the preferred orientation along (002) plane. The Optical
properties of ZnO were determined through the optical transmission method using ultraviolet-visible spectrophotometer with wavelength (300 – 1100) nm. The optical band gap values of
ZnO thin films were slightly increased from (2.9 - 3.1) eV as the film thickn

... Show More
View Publication Preview PDF
Publication Date
Thu May 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Optical and Structural Properties of SnO2 Thin Films Prepared by Sputtering Method
...Show More Authors

SnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
 

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Effect of SnO2/In2O3 Atomic Ratio on the Structural and Optical Properties of ITO Thin Filmsof SnO2:In2O3 Thin Film Composite Ratio on Structural and Optical Properties
...Show More Authors

In this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied.  Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Aug 04 2021
Journal Name
Ibn Al-haitham International Conference For Pure And Applied Science (ihicps)
Effect of Annealing on structural and optical properties of Indium Selenide (InSe) Thin films prepared by vacuum THERMAL EVAPORATION TECHNIQUE
...Show More Authors

Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Study The Effect of Annealing on Structural and Optical Properties of Indium Selenide (InSe) Thin Films Prepared by Vacuum Thermal Evaporation Technique
...Show More Authors

In this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phase with crystallites size of 17.459 nm. Th

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (8)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technolog
Effect Of heat Treatment On The Optical Properties Of CuInSe2 Thin Films
...Show More Authors

CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.

View Publication
Publication Date
Thu Apr 13 2017
Journal Name
Journal Of Multidisciplinary Engineering Science Studies (jmess)
The Effect Of Thickness On Some Physical Properties Of CdSe Thin Films
...Show More Authors

Publication Date
Thu Jan 07 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technology
Effect Of heat Treatment On The Optical Properties Of CuInSe2 Thin Films
...Show More Authors

CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.

Preview PDF