Computers have been used for numerous applications involving the automatic or semiautomatic recognition of patterns in image. Advanced manufacturing system requires automated inspection and test method to increase production and yield best quality of product. Methods are available today is machine vision. Machine vision systems are widely used today in the manufacturing industry for inspection and sorting application. The objective of this paper is to apply machine vision technology for measuring geometric dimension of an automotive part. Vision system usually requires reprogramming or parameterization of software when it has to be configured for a part or product. A web camera used to capture an image of an automotive part that has been chosen. In the machine vision, Matlab software is used to develop an algorithm to measure a geometric dimension of the part. The measurement system has been calibrated using gauge block. This work considers the factor influencing parameters on accuracy and precision of calibration as the pixels were used to perform the unit of measurement. This measurement has been performed by the conversion through the equation of the image processing. Formulation of the calibration is important from unit in pixel to mm taking into account the perfective effect of the camera view. Finally the measurement system has been tested for accuracy and precision.
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the method To address a problem and method To address a problem , In this research a comparisons are employed between the biased method and unbiased method with Bayesian using Gamma distribution method addition to Ordinary Least Square metho
... Show MoreA medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un
... Show MoreLeap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (F
... Show MoreVariable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreThe aim of this research is to identify the extent to which the Conventional and Islamic banks are committed to implement the requirements of the corporate governance in its financial reports. In addition to its commitment to transparency and clarity in dealing with the shareholders and stockholders to protect their interests and to determine the impact of the commitment of the corporate governance on assessing the financial performance of the conventional and Islamic banks that participate in Bahrain Stock Exchange.
Study of Direct Marketing techniques and determining the scope of the suitability of each of them in the application in the Iraqi market - An analytical and explorative study for sample of views for wholesaler in Baghdad. The essential idea of the research is to go into the most important concepts which have been mentioned in the direct marketing and determining its current and most important techniques and knowing the scope of applying these techniques in Baghdad main markets (Karrada, Jamilah, shorja, Baya area, zeyouna and new Baghdad) and which of those techniques most applicable in these markets. The research took a sample of (100) wholesalers who practice the activities of selling nutritional items, auto and outs spare part
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
The low-pressure sprinklers have been widely used to replace the high-pressure impact sprinklers in the lateral move sprinkler irrigation system due to its low operating cost and high efficiency. However, runoff losses under the low-pressure sprinkler irrigation machine can be significant. This study aims to evaluate the performance of the variable pulsed irrigation algorithm (VPIA) in reducing the runoff losses under low-pressure lateral move sprinkler irrigation machine for three different soil types. The VPIA uses the ON-OFF pulsing technique to reduce the runoff losses by controlling the number and width of the pulses considering the soil and the irrigation machine properties. Als