Innovative laboratory research and fluid breakthroughs have improved carbonate matrix stimulation technology in the recent decade. Since oil and gas wells are stimulated often to increase output and maximum recovery, this has resulted in matrix acidizing is a less costly alternative to hydraulic fracturing; therefore, it is widely employed because of its low cost and the fact that it may restore damaged wells to their previous productivity and give extra production capacity. Limestone acidizing in the Mishrif reservoir has never been investigated; hence research revealed fresh insights into this process. Many reports have stated that the Ahdeb oil field's Mishrif reservoir has been unable to be stimulated due to high injection pressures, which make it difficult to inject acid into the reservoir formation; and (ii) only a few acid jobs have been successful in Ahdeb oil wells, while the bulk of the others has been unsuccessful. Based on an acid efficiency curve, an ideal gel acid (HCl 15%) injection rate for this reservoir was 2.16 cc/min. This injection rate produces an optimal wormhole and the least amount of acid utilized. The optimum pore volume to breakthrough in wormhole propagation was 2.73, and the optimal interstitial velocity in wormhole propagation was 0.6 cm/min. Researchers have developed new formulae to compute the skin factor in anisotropic carbonates generated from matrix acidizing for the first time. This experiment revealed the need to acidify the matrix at the optimal injection rate.
This thesis was aimed to study gas hydrates in terms of their equilibrium conditions in bulk and their effects on sedimentary rocks. The hydrate equilibrium measurements for different gas mixtures containing CH4, CO2 and N2 were determined experimentally using the PVT sapphire cell equipment. We imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via μCT. Moreover, the effect of hydrate formation on the P-wave velocities of sandstone was investigated experimentally.
The compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).
Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.
A response surface methodology (RSM) is presen
... Show MoreActivated carbon (AC) is a highly important adsorbent material, as it is a solid form of pure carbon that boasts a porous structure and a large surface area, making it effective for capturing pollutants. Thanks to its exceptional features, AC is widely used for purifying water that is contaminated with odors and removing dyes in a cost-effective manner. A variety of carbonic materials have been employed to prepare AC, and this study aimed to evaluate the suitability of utilizing waste mango and avocado seeds for this purpose, followed by testing their efficacy in removing dye from aqueous solutions. The results indicate that using waste mango and avocado as AC is technically feasible, achieving dye removal percentages of 98% and 93%,
... Show MoreThe modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show More