This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the deep beam is governed by the size and location of web openings. The experimental results indicated that the reduction of the shear capacity may reach (66%). ABAQUS finite element software program was used for simulation and analysis. Numerical analyses provided un-conservative estimates for deep beam load carrying capacity in the range between (5-21%). However, the maximum scatter of the finite element method predictions for first diagonal and first flexural cracking loads was not exceeding (17%). Also, at service load the numerical of midspan deflection was greater than the experimental values by (9-18%).
The aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.
The use of deep learning.
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreThe aim of this research is to study the influence of additives on the properties of soap greases, such as lithium, calcium, sodium, lithium-calcium grease, by adding varies additives, such as graphite, molybdenum disulfide, carbon black, corrosion inhibitor, and extreme pressure.
These additives have been added to grease to obtain the best percentages that improve the properties of grease such as load carrying, wear resistance, corrosion resistance, drop point, and penetration.
The results showed the best weight percentages to all types of grease which give good properties are 1.5% extreme pressure additive, 3% graphite, 1% molybdenum disulfide, 2.5% carbon black.
The other hand, the best weight percentage for corrosion inhibit
Background: Pervasive Developmental Disorder (PDD) is a term refers to the overarching group of conditions to which autism spectrum disorder (ASD) belongs .
Objective: This study was designed to determine the existing behavior of children with autism in dental sitting, the behavior improvements in recall dental visits and evaluate the improvement in oral hygiene with using specific visual pedagogy chart.
Type of the study: Cross-sectional study.
Methods: Forty children of both genders, ages ranged from 4 – 6 years having primary teeth only were selected whose medical history included a diagnosis
... Show MoreIn this research, the Williamson-Hall method and of size-strain plot method was employed to analyze X- ray lines for evaluating the crystallite size and lattice strain and of cadmium oxide nanoparticles. the crystallite size value is (15.2 nm) and (93.1 nm) and lattice strain (4.2 x10−4 ) and (21x10−4) respectively. Also, other methods have been employed to evaluate the crystallite size. The current methods are (Sherrer and modified Sherrer methods ) and their results are (14.8 nm) and (13.9nm) respectively. Each method of analysis has a different result because the alteration in the crystallite size and lattice strain calculated according to the Williamson-Hall and size-strain plot methods shows that the non-uniform strain in nan
... Show More