This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the deep beam is governed by the size and location of web openings. The experimental results indicated that the reduction of the shear capacity may reach (66%). ABAQUS finite element software program was used for simulation and analysis. Numerical analyses provided un-conservative estimates for deep beam load carrying capacity in the range between (5-21%). However, the maximum scatter of the finite element method predictions for first diagonal and first flexural cracking loads was not exceeding (17%). Also, at service load the numerical of midspan deflection was greater than the experimental values by (9-18%).
Reactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlu
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThe research aims to show the effect of some short-term debt instruments (central treasury transfers, cash credit granted to the government by commercial banks) on the production of the wheat crop in Iraq, through its effect on money supply during the period (1990-2018), As the study includes two models according to the statistical program (Eviews9), the first model included measuring the effect of short-term debt instruments on money supply, and the second measuring the extent of the money supply's impact on Wheat crop production, as the results of the standard analysis showed that the short-term debt instruments used in the model were Significant effect on wheat crop production indirectly through its effect on money supply, As
... Show MoreAvery large numbers of articles are made by powder metallurgical methods using electrolytically reduced metal powders. Iron powder is one of these powders which play an important role in this field. Its preparation by electrolytic method is economic in comparison with the traditional methods (Atomization and carbonyl processes).
An electrochemical cell consisting of two electrodes (stainless steel cathode and iron anode, 99.9%) was used to study the electrolytic preparation of iron powder with particle size less than 106µm directly as powde1y form. Ferrous sulphate electrolyte was used containing sodium chloride as a stabilizing agent. The produced powder was thoroughly washed with an acidified distilled water and absolute ethan
... Show MoreThis research aims to create lightweight concrete mixtures containing waste from local sources, such as expanded polystyrene (EPS) beads and waste plastic fibers (WPFs), all are cheap or free in the Republic of Iraq and without charge. The modern, rigid, and mechanical properties of LWC were investigated, and the results were evaluated. Three mixtures were made, each with different proportions of plastic fibers (0.4%, 0.8%, 1.2%), in addition to a lightweight concrete mixture containing steak fibers (0.4%, 0.8%, 1.2%), in addition to a lightweight concrete mixture. It contains 20% EPS. The study found that the LWC caused by the addition of WPFs reduced the density (lightweight) of the concrete mixtures because EPS tends
... Show MoreThis research deals with study and analyze the industrial buyer behavior and identified its objectives by determine the nature of selection the members of the purchases committees and determine the role of the purchases committees to provide requirements of the educational and scientific process and knowledge Impact of the factors ( environmental , organizational , social , and individual ) and positions of the purchase in the behavior of the members of the purchases committees and starts the importance of research in it helps university administrations in the correct choice for the members of the purchases committees and gives a picture of professional conduct professional who is supposed to b
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More