Preferred Language
Articles
/
ehZYCocBVTCNdQwCgjFV
Effect of Size and Location of Square Web Openings on the Entire Behavior of Reinforced Concrete Deep Beams
...Show More Authors

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the deep beam is governed by the size and location of web openings. The experimental results indicated that the reduction of the shear capacity may reach (66%). ABAQUS finite element software program was used for simulation and analysis. Numerical analyses provided un-conservative estimates for deep beam load carrying capacity in the range between (5-21%). However, the maximum scatter of the finite element method predictions for first diagonal and first flexural cracking loads was not exceeding (17%). Also, at service load the numerical of midspan deflection was greater than the experimental values by (9-18%).

Crossref
View Publication
Publication Date
Fri Sep 03 2021
Journal Name
Buildings
Structural Efficiency of Hollow Reinforced Concrete Beams Subjected to Partial Uniformly Distributed Loading
...Show More Authors

Reinforced concrete (RC) beams containing a longitudinal cavity have become an innovative development and advantage for economic purposes of light-weight members without largely affecting their resistance against the applied loads. This type of openings can also be used for maintenance purposes and usage space of communication lines, pipelines, etc. RC beams are primarily loaded in the plane of the members, which are two-dimensional in a plane stress state and the dominant structural behaviours include bending, shear, or combination of both. In the present study, six numerical models of RC beams with and without openings were simulated by using commercial finite element software ANSYS to evaluate the structural behaviours of those b

... Show More
View Publication
Scopus (16)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sun Oct 02 2022
Journal Name
Engineering, Technology & Applied Science Research
Static and Dynamic Behavior of Circularized Reinforced Concrete Columns Strengthened with Hybrid CFRP
...Show More Authors

In this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Columns Subjected to Axial Load and Cyclic Lateral Load
...Show More Authors

Columns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and  deformations, caused by  spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and  . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Engineering
The Effect of Recycled Heating and Cooling and The Effect of The Speciment Size on The Compressive Strength of Concrete Exposed To High Temperature
...Show More Authors

     In the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.

    The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .      

   Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 11 2021
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Low Velocity Impact Loading on SelfCompacting Concrete Reinforced with Carbon Fiber Reinforced Polymers
...Show More Authors

t-Self-Compacting Concrete (SCC) reduces environmental noise and has more workability. This research presents an investigation of the behavior of SCC under mechanical loading (impact loading). Two types of cement have been used to produce SCC mixtures, Ordinary Portland Cement (OPC) and Portland Limestone Cement (PLC), which reduces the emission of carbon dioxide during the manufacturing process. The mixes were reinforced with Carbon Fiber Reinforced Polymer (CFRP) which is usually used to improve the seismic performance of masonry walls, to replace lost steel reinforcements, or to increase column strength and ductility. Workability tests were carried out for fresh SCC. Prepared concrete slabs of 500×500×50mm were tested for lo

... Show More
Publication Date
Mon Feb 24 2025
Journal Name
Advances In Structural Engineering
Experimental and numerical investigation on the behavior of composite reinforced concrete columns encased by steel section and hybrid GFRP section
...Show More Authors

GFRP was employed in constructions as an alternative to steel, which has many advantages like lightweight, large tensile strength and resist corrosion. Existing researches are insufficient in studying the influence of hybrid reinforced concrete composite columns encased by GFRP I-section (RCCCEG) and I-section steel (RCCCES). In this study twenty one (RC) specimens of a cross-section of 130 mm × 160 mm, with different length (long 1600 mm and short 750 mm) were encased by using I-section (steel and GFRP) and tested under various loading (concentric, eccentric and flexural loads). The test was focused on the influence of many parameters; load-carrying capacity, mode of failure, deformation and drawing an interaction diagram (N-

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Effect of posts inclination on the behavior of prestressed quadrilateral perforated concrete rafter
...Show More Authors

View Publication
Crossref
Publication Date
Fri Sep 01 2006
Journal Name
Journal Of Engineering
Effect of Transverse Base Width Restraint on the Cracking Behavior of Massive Concrete
...Show More Authors

The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested

... Show More
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Effect of Transverse Base Width Restraint on the Cracking Behavior of Massive Concrete
...Show More Authors

The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in
addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure sug

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Civil Engineering Journal
Post-Fire Behavior of Post-Tensioned Segmental Concrete Beams under Monotonic Static Loading
...Show More Authors

This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref