Sorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equilibrium data of XOTS adsorption on BXT and BXT-HDTMA surfaces were best fitted with the Freundlich isotherm model. The pseudo-second-order model provided very good fitting for the dye on the two surfaces. The error function, the sum of the absolute errors (SAE), was calculated to identify the best isotherm in this study. The thermodynamic parameters like ΔHº, ΔSº and ΔGº were also calculated. The adsorbent dosage weight and pH were found the most factors influencing the removal process.
Biped robots have gained much attention for decades. A variety of researches have been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. This paper discusses the main challenges encountered in the design of biped robots, such as modeling, stability and their walking patterns. The subject is difficult to deal with because the biped mechanism intervenes with mechanics, control, electronics and artificial intelligence. In this paper, we collect and introduce a systematic discussion of modelin
Groundwater modelling is particularly challenging in arid regions where limited water recharge is available. A fault zone will add a significant challenge to the modelling process. The Western Desert in Iraq has been chosen to implement the modelling concept and calculate the model sensitivity to the changes in aquifer hydraulic properties and calibration by researching 102 observations and irrigation wells. MODFLOW-NWT, which is a Newtonian formulation for MODFLOW-2005 approaches, have been used in this study. Further, the simulation run has been implemented using the Upstream-Weighting package (UPW) to treat the dry cells. The results show sensitivity to the change of the Kx value for the major groundwater discharge flow. Only abo
... Show MoreResource estimation is an essential part of reservoir evaluation and development planning which highly affects the decision-making process. The available conventional logs for 30 wells in Nasiriyah oilfield were used in this study to model the petrophysical properties of the reservoir and produce a 3D static geological reservoir model that mimics petrophysical properties distribution to estimate the stock tank oil originally in place (STOOIP) for Mishrif reservoir by volumetric method. Computer processed porosity and water saturation and a structural 2D map were utilized to construct the model which was discretized by 537840 grid blocks. These properties were distributed in 3D Space using sequential Gaussian simulation and the variation in
... Show MoreIn this study, we design narrow band pass filter for window (3_5) ?m dependent on the needle optimization method , and a comparison with global designs published -Also, the effect of change parameter design on the optical performance of filter was studded and being able to overcome the difficulties of the design.In this study, the adoption of homogeneous optical properties materials as thin film depositing on a substrate of germanium at wavelength design (? = 4 ?m). For design this kind of filters we used advanced computer program (Matlab )to build a model design dependent both matrix characteristic and Needle technique. In this paper we refer to the type of Mert function , which is used for correct optical performance acces
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
The corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance