Preferred Language
Articles
/
eYaLsoYBIXToZYALDrGr
Producing Sustainable Concrete using Nano Recycled Glass
...Show More Authors
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass powder is prepared by crushing and storming a glass bottle to obtain a Blaine surface area of approximately 28 m2/g and conforming to the chemical requirements for natural pozzolana class N, according to ASTM C618. The outcome of using nano recycled glass for theaddition and replacement of ordinary Portland cement weight on the compressive and flexural strengths of concrete at 7, 28, and 90 days is investigated.

Results:

The concrete mixes with 2.5%, 5%, 7.5%, and 10% replacements of cement by nano recycled glass powder show improvements in compressive and flexural strengths of up to 12.77% and 7.66%, respectively, at 28 days. Meanwhile, mixes with the addition of 5% nano glass powder show best improvements in compressive and flexural strengths of up to 11.49% and 7.46%, respectively.

Scopus Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

     Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha

... Show More
Crossref (3)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Journal Of Engineering
Experimental Investigation of Crack Initiation and Growth in Concrete Slabs Placed Directly on Clayey Soil
...Show More Authors

The main objective of this study is to examine the impact of moisture concrete of clayey soil on the concrete slabs placed directly over it. This experimental study presents the mechanical properties of the concrete slab when placed on different clayey soil moisture content ranging from 0% to the optimum moisture content of 35%. The tests were performed on soil concrete specimens of 25*30*50 mm exposed to sprayed water curing conditions for 28 days. Tests of compressive strength, ultrasonic pulse velocity, crack depth and crack width were investigated through this paper. An ejection relationship between compressive strength of concrete and water content in the soil was observed, with a 26% increase with water increasing from 0% to 35%. T

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
Utilization of Iraqi Metakaolin in Special Types of Concrete: A Review Based on National Researches
...Show More Authors

Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
ESTIMATION THE 7 AND 28- DAY NORMAL COMPRESSIVE STRENGTH BY ACCELERATED TEST METHODS IN CONCRETE
...Show More Authors

Curing of concrete is the maintenance of a satisfactory moisture content and temperature for a
period of time immediately following placing so the desired properties are developed. Accelerated
curing is advantages where early strength gain in concrete is important. The expose of concrete
specimens to the accelerated curing conditions which permit the specimens to develop a significant
portion of their ultimate strength within a period of time (1-2 days), depends on the method of the
curing cycle.Three accelerated curing test methods are adopted in this study. These are warm water,
autogenous and proposed test methods. The results of this study has shown good correlation
between the accelerated strength especially for

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 19 2021
Journal Name
Archives Of Civil And Mechanical Engineering
Push-out test of steel–concrete–steel composite sections with various core materials: behavioural study
...Show More Authors

Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co

... Show More
View Publication
Scopus (27)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Evaluating the Uses of Concrete Demolishing Waste in improving the Geotechnical Properties of Expansive Soil
...Show More Authors

Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 27 2022
Journal Name
Materials
Flexural Performance of Encased Pultruded GFRP I-Beam with High Strength Concrete under Static Loading
...Show More Authors

There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP

... Show More
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Civil Engineering Journal
Experimental and Numerical Investigations of Composite Concrete–Steel Plate Shear Walls Subjected to Axial Load
...Show More Authors

This research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing

... Show More
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology & Applied Science Research
Experimental Investigation of Composite Circular Encased GFRP I-Section Concrete Columns under Different Load Conditions
...Show More Authors

Pultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular co

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EFFECT OF STEEL FIBERS ADDITION ON THE BEHAVIOR OF HIGH STRENGTH CONCRETE CIRCULAR SHORT COLUMNS
...Show More Authors

loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter

... Show More
View Publication Preview PDF
Crossref (1)
Crossref