Preferred Language
Articles
/
eYaLsoYBIXToZYALDrGr
Producing Sustainable Concrete using Nano Recycled Glass
...Show More Authors
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass powder is prepared by crushing and storming a glass bottle to obtain a Blaine surface area of approximately 28 m2/g and conforming to the chemical requirements for natural pozzolana class N, according to ASTM C618. The outcome of using nano recycled glass for theaddition and replacement of ordinary Portland cement weight on the compressive and flexural strengths of concrete at 7, 28, and 90 days is investigated.

Results:

The concrete mixes with 2.5%, 5%, 7.5%, and 10% replacements of cement by nano recycled glass powder show improvements in compressive and flexural strengths of up to 12.77% and 7.66%, respectively, at 28 days. Meanwhile, mixes with the addition of 5% nano glass powder show best improvements in compressive and flexural strengths of up to 11.49% and 7.46%, respectively.

Scopus Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Diabetes Diagnosis Using Deep Learning
...Show More Authors

     Hyperglycemia is a complication of diabetes (high blood sugar). This condition causes biochemical alterations in the cells of the body, which may lead to structural and functional problems throughout the body, including the eye. Diabetes retinopathy (DR) is a type of retinal degeneration induced by long-term diabetes that may lead to blindness. propose our deep learning method for the early detection of retinopathy using an efficient net B1 model and using the APTOS 2019 dataset. we used the Gaussian filter as one of the most significant image-processing algorithms. It recognizes edges in the dataset and reduces superfluous noise. We will enlarge the retina picture to 224×224 (the Efficient Net B1 standard) and utilize data aug

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
strong criminal capabilities، Using simulation .
...Show More Authors

The penalized least square method is a popular method to deal with high dimensional data ,where  the number of explanatory variables is large than the sample size . The properties of  penalized least square method are given high prediction accuracy and making estimation and variables selection

 At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering
...Show More Authors

View Publication
Scopus (134)
Crossref (128)
Scopus Clarivate Crossref
Publication Date
Thu Jan 16 2025
Journal Name
Journal Of Engineering
Drag Reduction by using Anionic Surfactants
...Show More Authors

View Publication
Publication Date
Sat Jan 23 2016
Journal Name
Computer Science & Information Technology ( Cs & It )
Modelling Dynamic Patterns Using Mobile Data
...Show More Authors

View Publication
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Ssrn Electronic Journal
Human Mobility Patterns Modelling Using Cdrs
...Show More Authors

View Publication
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment, And Sustainability: Tmrees23fr
Hyperspectral pansharpening improvement using MNF transformation
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Using Neural Network with Speaker Applications
...Show More Authors

In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Image Zooming Using Inverse Slantlet Transform
...Show More Authors

Digital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.

      First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the   signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by  box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .

  &nbs

... Show More
View Publication Preview PDF