Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentration of 2 ppm. Sensor fabricated at (70 ◦C and 6 hrs.) appears higher gas sensitivity (6.319) with shorter response and recovery times of 41.4 s, and 23.4 s respectively at operating temperature 220 ◦C towards NO2 gas efficiently compared with other prepared samples. This study offers cost-effectiveness and a simple method for designing and fabricating gas sensors with good sensing characteristics, making it a favorable candidate for a NO2 gas monitor at low gas concentration.
The presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreApplying 4K, (Ultra HD) Real-time video streaming via the internet network, with low bitrate and low latency, is the challenge this paper addresses. Compression technology and transfer links are the important elements that influence video quality. So, to deliver video over the internet or another fixed capacity medium, it is essential to compress the video to more controllable bitrates (customarily in the 1-20 Mbps range). In this study, the video quality is examined using the H.265/HEVC compression standard, and the relationship between quality of video and bitrate flow is investigated using various constant rate factors, GOP patterns, quantization parameters, RC-lookahead, and other types of video motion sequences. The ultra
... Show MoreThe conductance of solu ti ons of cysteine in water at different concentrations and temperatures has been measured. These solutions obey Onsagcr equation and give linear relations especially at low concentrations. In more concentrated solutions a deviation from the equation is observed.
The molar conductivity of these solutions decreases with t he increase in concen trations at constant temperature.
The values of the ionization constants and the conductivity at infin ite
dilution for each temperature have been calcu lated.
The objective of this study is to determine the efficacy of class V Er:YAG laser (2940 nm) cavity preparation and conventional bur cavity preparation regarding Intrapulpal temperature rise during cavity preparation in extracted human premolar teeth. Twenty non carious premolar teeth extracted for orthodontic purposes were used and class V cavity preparation was applied both buccal and lingual sides for each tooth .Samples were equally grouped into two major groups according to cavity depth (1mm and 2mm). Each major group was further subdivided into two subgroupsof ten teeth for each (twenty cavities for each subgroup). TwinlightEr:YAG laser (2940 nm) with 500mJ pulse energy, P.R.R of 10 Hz and 63.69 J/cm2 energy density was used. The ana
... Show MoreA high Tc superconductor with a nominal composition
(Bi1-xPbx)2(Sr1-yBay)2Ca2Cu3O10+δ for (0 £ x £ 0.5) and (0 £ y £ 0.5) was prepared by
a solid state reaction method. The effect of the substitution of Pb for Bi and Ba for Sr and
quenching temperature on the superconductivity has been investigated to obtain the
optimum conditions for the formation and stabilization of the high Tc phase (2223).
The results showed that the optimum sintering temperature for the pure composition is
equal to 875°C and the sintering time is equal to 240h with heating and cooling rate of
60°C/h . Our results indicated that a small amount of (Ba = 0.1) could raise the transition
temperature (Tc), but enhancing Ba to 0.4 has raised
Copper Phthalocyanine (CuPc) thin film with and without multi-walled carbon nanotubes (MWCNTs) is prepared using the solution based method and used in gas sensor and solar cell applications. The structural characteristics of the CuPc thin films showed a single peak around 7o with the preferred orientation for charge transportation. Using atomic force microscopy (AFM), morphological properties show a rough surface with some aggregates and ribbons. The optical absorption properties were determined using UV-Visible absorption spectroscopy; the optical band gap has varied after adding MWCNTs to CuPc. Electrical conductivity of CuPc:MWCNTs composite is higher than that of the pure CuPc. The CuPc thin film sensr have sh
... Show More